Site-specific recombinases in genetic engineering: Modern in vivo technologies

2010 ◽  
Vol 44 (4) ◽  
pp. 244-251
Author(s):  
B. Ostash
2017 ◽  
Author(s):  
Jessica M. Ong ◽  
Christopher R. Brown ◽  
Matthew C. Mendel ◽  
Gregory J. Cost

AbstractInclusion of the woodchuck hepatitis virus post-transcriptional response element (WPRE) in the 3’ UTR of mRNA encoding zinc-finger or TALE nucleases results in up to a fifty-fold increase in nuclease expression and a several-fold increase in nuclease-modified chromosomes. Significantly, this increase is additive with the enhancement generated by transient hypothermic shock. The WPRE-mediated improvement is seen across several types of human and mouse primary and transformed cells and is translatablein vivoto the mouse liver.


2000 ◽  
Author(s):  
Anne K. Kowal ◽  
Caroline Kohrer ◽  
Uttam L. RajBhandary

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Emma Renard ◽  
Estel Collado Camps ◽  
Coline Canovas ◽  
Annemarie Kip ◽  
Martin Gotthardt ◽  
...  

Variable domains of heavy chain only antibodies (VHHs) are valuable agents for application in tumor theranostics upon conjugation to both a diagnostic probe and a therapeutic compound. Here, we optimized site-specific conjugation of the chelator DTPA and the photosensitizer IRDye700DX to anti-epidermal growth factor receptor (EGFR) VHH 7D12, for applications in nuclear imaging and photodynamic therapy. 7D12 was site-specifically equipped with bimodal probe DTPA-tetrazine-IRDye700DX using the dichlorotetrazine conjugation platform. Binding, internalization and light-induced toxicity of DTPA-IRDye700DX-7D12 were determined using EGFR-overexpressing A431 cells. Finally, ex vivo biodistribution of DTPA-IRDye700DX-7D12 in A431 tumor-bearing mice was performed, and tumor homing was visualized with SPECT and fluorescence imaging. DTPA-IRDye700DX-7D12 was retrieved with a protein recovery of 43%, and a degree of labeling of 0.56. Spectral properties of the IRDye700DX were retained upon conjugation. 111In-labeled DTPA-IRDye700DX-7D12 bound specifically to A431 cells, and they were effectively killed upon illumination. DTPA-IRDye700DX-7D12 homed to A431 xenografts in vivo, and this could be visualized with both SPECT and fluorescence imaging. In conclusion, the dichlorotetrazine platform offers a feasible method for site-specific dual-labeling of VHH 7D12, retaining binding affinity and therapeutic efficacy. The flexibility of the described approach makes it easy to vary the nature of the probes for other combinations of diagnostic and therapeutic compounds.


1994 ◽  
Vol 13 (8) ◽  
pp. 1844-1855 ◽  
Author(s):  
R. McCulloch ◽  
L.W. Coggins ◽  
S.D. Colloms ◽  
D.J. Sherratt

2016 ◽  
Vol 12 (6) ◽  
pp. 1731-1745 ◽  
Author(s):  
Jonathan Lotze ◽  
Ulrike Reinhardt ◽  
Oliver Seitz ◽  
Annette G. Beck-Sickinger

Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.


1997 ◽  
Vol 31 (3) ◽  
pp. 194-200 ◽  
Author(s):  
C. Robinson ◽  
J. Kirkham ◽  
R. Percival ◽  
R.C. Shore ◽  
W.A. Bonass ◽  
...  

1997 ◽  
Vol 152 (3) ◽  
pp. 355-363 ◽  
Author(s):  
L Ferasin ◽  
G Gabai ◽  
J Beattie ◽  
G Bono ◽  
A T Holder

The ability of site-specific antipeptide antisera to enhance the biological activity of ovine FSH (oFSH) in vivo was investigated using hypopituitary Snell dwarf mice. These animals were shown to respond to increasing doses of oFSH (3·3–90 μg/day), administered in two daily injections over a 5-day treatment period, in a highly significant dose-dependent fashion. The responses measured were increases in uterine weight, ovarian weight and the index of keratinisation in vaginal smears. The dose-dependent response to oFSH confirmed the suitability of this animal model for these investigations and suggested the suboptimal dose of oFSH (20 μg/day) for use in enhancement studies. Five peptides derived from the β subunit of bovine FSH (bFSH) (A, residues 33–47; B, 40–51; C, 69–80; D, 83–94; E, 27–39) were used to generate polyclonal antipeptide antisera. Of these peptides, only A and B produced an antiserum (raised in sheep) capable of recognising 125I-bFSH in a liquid phase RIA. Antisera prepared against peptide A or peptide B were found to significantly enhance the biological activity of 20 μg oFSH/day over a 5-day treatment period. The response to antipeptide antisera alone did not differ significantly from that observed in PBS-injected control animals, neither did the response to FSH alone differ from that observed in animals treated with FSH plus preimmune serum. Thus the enhanced responses are dependent upon the presence of FSH plus antipeptide antiserum. Peptides A and B are located in a region thought to be involved in receptor recognition, this may have implications for the mechanism underlying this phenomenon and/or the structure/function relationships of FSH. That FSH-enhancing antisera can be generated by immunisation of animals with peptides A and B suggests that it may be possible to develop these peptides as vaccines capable of increasing reproductive performance, such as ovulation rate. The high degree of sequence homology between ovine, bovine and porcine (and to a lesser extent human and equine) FSH in the region covered by peptides A and B suggests that these peptides could also be used to promote and regulate ovarian function in all of these species. Journal of Endocrinology (1997) 152, 355–363


Sign in / Sign up

Export Citation Format

Share Document