Effect of crystal structure on the tribological properties of diamond coatings on hard-alloy cutting tools

2017 ◽  
Vol 38 (3) ◽  
pp. 252-258 ◽  
Author(s):  
E. E. Ashkinazi ◽  
V. S. Sedov ◽  
M. I. Petrzhik ◽  
D. N. Sovyk ◽  
A. A. Khomich ◽  
...  
2018 ◽  
Vol 70 (7) ◽  
pp. 1224-1233 ◽  
Author(s):  
Kaleem Ahmad Najar ◽  
N.A. Sheikh ◽  
Mohammad Mursaleen Butt ◽  
M.A. Shah

Purpose The purpose of this study is to investigate the mechanical and tribological properties of the synthetic diamond coatings deposited on WC-Co cutting tools for their prospective applications in mechanical industry. In this work, the concept of nanocrystalline diamond, microcrystalline diamond and multilayer-diamond coating systems were proposed and deposited on WC-Co substrates with the top-layer nanocrystallinity, optimum thickness and interfacial adhesion strength for load-bearing tribological and machining applications. Also, the overall mechanical and tribological properties of all synthetic diamond coatings were compared for the purpose of selecting a suitable type of protective layer used on the surfaces of WC-Co cutting tools or mechanical dies. Design/methodology/approach Smooth and adhesive single layered and multilayered synthetic deposited on chemically etched cemented tungsten carbide (WC-Co) substrates using predetermined process parameters in hot filament chemical vapor deposition (HFCVD) method. A comparison has been documented between diamond coatings having different nature and architecture for the purpose of studying their mechanical and tribological characteristics. The friction characteristics were studied experimentally using ball-on-disc type linear reciprocating micro-tribometer under the influence of varying load conditions and within dry sliding conditions. Nanoindentation tests were conducted on each diamond coating using Berkovich nanoindenter for the measurement of their hardness and elastic modulus values. Also, the wear characteristics of all sliding bodies were studied under varying load conditions using cumulative weight loss and density method. Findings Depositing any type of diamond coating on the cemented carbide tool insert increases its all mechanical and tribological characteristics. When using boron-doping onto the top-layer surface of diamond coatings decrease slightly their mechanical properties but increases the tribological characteristics. Present analysis reveals that friction coefficient of all diamond-coated WC-Co substrates decreases with the increase of normal load. Therefore, maintaining an appropriate level of normal load, sliding time, sliding distance, atmospheric conditions and type of diamond coating, the friction coefficient may be kept to some lower value to improve mechanical processes. Originality/value As the single layered synthetic diamond coatings have not given the full requirements of mechanical and tribological properties when deposited on cutting tools. Therefore, the multilayered diamond coatings were proposed and developed to enhance the interfacial integrity of the nanocrystalline and microcrystalline layers (by eliminating the sharp interface) as well as increasing the hardness of tungsten carbide substrate. However, when using boron doping onto the top-layer surface of diamond, coatings decreases slightly their mechanical characteristics but also decreases the value of friction coefficient.


Wear ◽  
1999 ◽  
Vol 225-229 ◽  
pp. 843-847 ◽  
Author(s):  
T.Le Huu ◽  
M Schmitt ◽  
D Paulmier ◽  
A.G Mamalis ◽  
A Grabchenko

2021 ◽  
pp. 106854
Author(s):  
P. Budzyński ◽  
M. Kamiński ◽  
Z. Surowiec ◽  
M. Wiertel ◽  
V.A. Skuratov ◽  
...  

2011 ◽  
Vol 695 ◽  
pp. 417-420 ◽  
Author(s):  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Bhupendra Joshi ◽  
Soo Wohn Lee

Oxide ceramics such as alumina and zirconia are industrially utilized as cutting tools, a variety of bearings, biomaterials, and thermal and corrosion-resistant coatings due to their high hardness, chemical inertness, high melting point, and ability to retain mechanical strength at elevated temperatures. In this research, the effect of other ceramic additives (TiO2) and h-BN within alumina(α-Al2O3) and yttria-stabilized tetragonal (Y-TZP) composite was studied with respect to the mechanical and tribological properties. The lowest coefficient of frction of 0.45 was observed for the ZTA ceramic composite with hBN-TiO2. The highest hardness, fracture toughness and flexural strength were obtained as 15.7GPa, 5.2MPam-1/2, 712MPa, respectively.


2000 ◽  
Vol 125 (1-3) ◽  
pp. 251-256 ◽  
Author(s):  
Y.F. Ivanov ◽  
V.P. Rotshtein ◽  
D.I. Proskurovsky ◽  
P.V. Orlov ◽  
K.N. Polestchenko ◽  
...  

2020 ◽  
Vol 27 (08) ◽  
pp. 1950197
Author(s):  
X. L. LEI ◽  
B. X. YANG ◽  
Y. HE ◽  
F. H. SUN

This study is focused on the tribological properties of micro- and nano-crystalline diamond (MCD and NCD), non-hydrogenated and hydrogenated diamond-like carbon (DLC and DLC-H) and nitrogen-based (CrN, TiN and TiAlN) coatings sliding against the super alloy Inconel 718, in terms of the maximal and average coefficients of frictions (COFs), the worn morphologies and the specific wear rates, by the rotating ball-on-plate configuration under dry condition. The results show that the nitrogen-based films show comparable COFs and wear rates with the WC–Co substrates. The DLC and DLC-H show lower COFs compared with the nitrogen-based films. Furthermore, their wear resistance is limited due to their low thickness compared with MCD and NCD, which have the same elemental composition. The DLC-H coating exhibits much lower wear rate compared with the DLC coating, which may be derived from the passivation of dangling bonds by the linking of H to C atoms. The MCD and NCD films show the lowest average COFs and mild wear after tribotests, due to their high hardness and low adhesive strength between pure diamond and the super alloy. Among all the tested films, the NCD film-based tribopair presents the lowest maximal and average COFs, tiny wear debris particles, mild wear of ball and plate without scratching grooves, indicating that the NCD film may be suitable to be deposited on cutting tools for super alloy machining.


2018 ◽  
Vol 224 ◽  
pp. 01051
Author(s):  
Evgeniy V. Artamonov ◽  
Vitaliy V. Kireev ◽  
Vitaliy A. Zyryanov

Nowadays Russian manufacturers of metal-cutting tools for machine-building industry do not offer structures of prefabricated cutting hobs with retrofittable carbide blades for processing of tooth wheels, though usage of retrofittable carbide blades allows to increase significantly working capacity and productivity of the processing. As of today creation of an assembly cutting tool for processing of tooth wheels with the retrofittable carbide blades is a big step forward for machine-building industry. A high quality tool allows warranting for a new equipment and making work of operators more productive. This paper offers a new technical solution providing increase of efficiency of processing by assembly tools with the retrofittable carbide blades made of a hard alloy. Due to usage of progressive cutting patterns division of a margin for straight-line segments and curved sections is performed. This division has a positive impact on cutting hard-alloy inserts and also reduces their wear and tear.


2019 ◽  
Author(s):  
E. E. Ashkinazi ◽  
V. Yu. Yurov ◽  
V. S. Sedov ◽  
A. P. Bolshakov ◽  
V. E. Rogalin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document