Testing, debugging, and adjustment of digital excitation regulator ARV-MA for T3FA-110-2A turbogenerator of power station No. 22 of Moscow power system based on electrodynamic model of the Power Transmission Research Institute

2010 ◽  
Vol 81 (2) ◽  
pp. 99-103
Author(s):  
A. S. Gerasimov ◽  
T. A. Gushchina ◽  
A. H. Esipovich ◽  
A. S. Zekkel’ ◽  
D. V. Sorokin
2012 ◽  
Vol 214 ◽  
pp. 531-533
Author(s):  
Zhi Tian Zhang ◽  
Xiao Ping Shi ◽  
Xiao Ling Shi

This paper introduces the research on the Excitation Regulator of the Synchronous Generator with dual CPUs, based on Digital Signal Processor (TMS320LF2812). With the multiple functions of monitoring, analysis, controlling and protection, it overcomes the shortage of the domestic excitation device in terms of self-monitoring and self-protection,which effectively improves device reliability. By analyzing the allocation of reactive load of the interconnected Synchronous Motor group, the modeling and simulation of the digital excitation regulator in the power system are illustrated in the paper. The results of the simulation show that the proposed regulation model are feasible, satisfying various running demands of the Synchronous Motor and Power System.


2014 ◽  
Vol 960-961 ◽  
pp. 1029-1033
Author(s):  
Yong Chun Su ◽  
Kai Xuan Chang

In order to face the challenge of our economy and the environment, it is needed to speed up the energy structure transition and UItra High voltage (UHV) transmission has become an inevitable choice. Researches on the influence of UHV project to Jiangxi power grid are carried out in this paper. Using advanced digital power system simulator (ADPSS), the real-time simulation model of Jiangxi power grid is build up including the UHV project. Based on the simulation model, the problem of low frequency oscillation in Jiangxi power system is studied after the UHV power transmission project accessed. The influence of the UHV transmission line faults on system stability of Jiangxi grid is also researched.


Author(s):  
Nur Ashida Salim ◽  
Nur Diyana Shahirah Mohd Zain ◽  
Hasmaini Mohamad ◽  
Zuhaila Mat Yasin ◽  
Nur Fadilah Ab Aziz

<span lang="EN-US">Transient stability in power system is vital to be addressed due to large disturbances that could damage the system such as load changes and voltage increases. This paper presents a multi-machine transient stability using the Static Synchronous Series Compensator (SSSC). SSSC is a device that is connected in series with the power transmission line and produces controllable voltage which contribute to a better performance in the power system stability. As a result, this research has observed a comparison of the synchronization of a three-phase system during single-phase faults before and after installing the SSSC device. In addition, this research investigates the ability of three different types of controllers i.e. Proportional Integral (PI), Proportional Integral Derivation (PID), and Generic controllers to be added to the SSSC improve the transient stability as it cannot operate by itself. This is because the improvement is too small and not able to achieve the desired output. The task presented is to improve the synchronization of the system and time taken for the voltage to stabilize due to the fault. The simulation result shows that the SSSC with an additional controller can improve the stability of a multi-machine power system in a single phase fault.</span>


Author(s):  
Avagaddi Prasad ◽  
J. Belwin Edward ◽  
K. Ravi

Power system constitute a major part of the electrical system relating in the present world. Every single portion of this system assumes a major part in the accessibility of the electrical power one uses at their homes, enterprises, workplaces, industrial facilities and so on. Any deficiency in power system causes a ton of inconvenience for the maintenance of the system. So transmission system needs a proper protection scheme to ensure continuous power supply to the consumers. The countless extent of power systems and applications requires the improvement in suitable techniques for the fault classification in power transmission systems, to increase the efficiency of the systems and to avoid major damages. For this purpose, the technical literature proposes a large number of methods. This chapter analyzes the technical literature, summarizing the most important methods that can be applied to fault classification and advanced technologies developed by various researchers in power transmission systems.


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 38 ◽  
Author(s):  
Bouzounierakis ◽  
Katsigiannis ◽  
Fiorentzis ◽  
Karapidakis

Greece has a large number of islands that are isolated from the main interconnected Greek power system; however, a majority of them are to be interconnected in the mainland grid over the next decade. A large number of these islands present a significant amount of wind and solar potential. The nature of load demand and renewable production is stochastic; thus, the operation of such isolated power systems can be improved significantly by the installation of a large-scale energy storage system. The role of storage is to compensate for the long and short-term imbalances between power generation and load demand. Pumped hydro storage (PHS) systems represent one of the most mature technologies for large-scale energy storage. However, their advantages have not been proven in practice for cases of medium and small-sized isolated insular systems. Regarding Greece, which contains a large number of isolated insular systems, a PHS system in the island of Ikaria started its test operation in 2019, whereas in Europe only one PHS system operates in El Hierro (Canary Islands). This paper studies the effect of installing a wind-PHS hybrid power station in the operation of the insular power system of Samos, Greece, according to the latest regulatory framework. The implemented analysis uses real hourly data for a whole year, and examines the effects of such an installation considering investors’ and power system operators’ viewpoints. More specifically, the economic viability of this project under different billing scenarios is compared, and its impact on the insular power system operation for various PHS sizes is examined.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3365 ◽  
Author(s):  
Lukas Wienholt ◽  
Ulf Müller ◽  
Julian Bartels

The paradigm shift of large power systems to renewable and decentralized generation raises the question of future transmission and flexibility requirements. In this work, the German power system is brought to focus through a power transmission grid model in a high spatial resolution considering the high voltage (110 kV) level. The fundamental questions of location, type, and size of future storage units are addressed through a linear optimal power flow using today’s power grid capacities and a generation portfolio allowing a 66% generation share of renewable energy. The results of the optimization indicate that for reaching a renewable energy generation share of 53% with this set-up, a few central storage units with a relatively low overall additional storage capacity of around 1.6 GW are required. By adding a constraint of achieving a renewable generation share of at least 66%, storage capacities increase to almost eight times the original capacity. A comparison with the German grid development plan, which provided the basis for the power generation data, showed that despite the non-consideration of transmission grid extension, moderate additional storage capacities lead to a feasible power system. However, the achievement of a comparable renewable generation share provokes a significant investment in additional storage capacities.


Sign in / Sign up

Export Citation Format

Share Document