Research on the one-way magnetic attraction force of the armature in a solenoid electromagnet

2015 ◽  
Vol 86 (10) ◽  
pp. 608-611 ◽  
Author(s):  
L. A. Neiman
2008 ◽  
Vol 144 ◽  
pp. 53-58 ◽  
Author(s):  
Tomasz Huścio ◽  
Krzysztof Falkowski

In this paper a formula of estimation of magnetic attraction force in the relative base – air-gap – absolute base system is presented. The attraction force of the relative base (forcer) to the ferromagnetic absolute base (stator) is a result of the attraction of permanent magnets, which are the components of the electromagnetic modules. The physical model and mathematical description of the particular electromagnetic module are presented.


CONVERTER ◽  
2021 ◽  
pp. 119-132
Author(s):  
Xin Chen, Wuwei Feng, Yulian Zhang, Minglei Li, Shifei Wu

With the advancement in science and technology, a wall-climbing robot attached to the ship's outer surface is increasingly replacing humans in the rust removal. The magnetic force is not just the adsorption force but also the moving resistance force, which is currently the technological bottleneck in wall-climbing robotics based on magnetic adsorption. This paper proposes a novel wall-climbing robot based on electrically controlled permanent magnet technology to solve this problem. An electrically controlled permanent magnetic wall-climbing robot is proposed to realize the function of magnetization and demagnetization by changing the pulse current. The results of the experiments reveal that the magnetizing force is adequately adsorbed on the ship's outer surface. The magnetic attraction force is close to 0 N during demagnetization, meaning that the system is fully unloaded, as predicted by the theoretical analysis.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 524
Author(s):  
Munehisa Takeda ◽  
Isao Shimoyama

In this study, we analyzed the vertical driving performance of multiple connected magnetic wheel-driven microrobots when moving up and down a small cylinder that simulated a pipe. The dynamics of pipe climbing by the magnetic wheel-driven microrobot were analyzed considering the magnetic attraction force and slip; a vertical climbing simulator was developed considering the hoop force and external force from the adjacent microrobots to determine the magnetic attraction force required for multiple connected microrobot pipe climbing. A prototype of an independent vertical climbing microrobot, 5 mm long, 9 mm wide, and 6.5 mm high, and prototypes of 10 microrobots were manufactured to evaluate the vertical driving performance. The usefulness was verified by showing that three driving microrobots can move seven non-driving microrobots comprising 60% of their own weight up and down along a small cylinder.


2015 ◽  
Vol 58 (3) ◽  
pp. 355-358
Author(s):  
D. A. Gabrielyan ◽  
V. V. Semenov ◽  
A. A. Uteshev

1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
J.A. Eades ◽  
E. Grünbaum

In the last decade and a half, thin film research, particularly research into problems associated with epitaxy, has developed from a simple empirical process of determining the conditions for epitaxy into a complex analytical and experimental study of the nucleation and growth process on the one hand and a technology of very great importance on the other. During this period the thin films group of the University of Chile has studied the epitaxy of metals on metal and insulating substrates. The development of the group, one of the first research groups in physics to be established in the country, has parallelled the increasing complexity of the field.The elaborate techniques and equipment now needed for research into thin films may be illustrated by considering the plant and facilities of this group as characteristic of a good system for the controlled deposition and study of thin films.


Sign in / Sign up

Export Citation Format

Share Document