Modeling of Magnetic Attraction Force of Electromagnetic Module in a Relative Base – Air-Gap – Absolute Base System

2008 ◽  
Vol 144 ◽  
pp. 53-58 ◽  
Author(s):  
Tomasz Huścio ◽  
Krzysztof Falkowski

In this paper a formula of estimation of magnetic attraction force in the relative base – air-gap – absolute base system is presented. The attraction force of the relative base (forcer) to the ferromagnetic absolute base (stator) is a result of the attraction of permanent magnets, which are the components of the electromagnetic modules. The physical model and mathematical description of the particular electromagnetic module are presented.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


1970 ◽  
Vol 110 (4) ◽  
pp. 25-29 ◽  
Author(s):  
C. Akuner ◽  
E. Huner

In this study, the axial flux permanent magnet motor and the length range of the air gap between rotors was analyzed and the appropriate length obtained. NdFeB permanent magnets were used in this study. Permanent magnets can change the characteristics of the motor's torque. However, the distance between permanent magnets and the air gap will remain constant for each magnet. The impact of different magnet angles for the axial flux permanent magnet motor and other motor parameters was examined. To this aim, the different angles and torque values of the magnetic flux density were calculated using the finite element method of analysis with the help of Maxwell 3D software. Maximum torque was obtained with magnet angles of 21°, 26°, 31.4°, and 34.4°. Additionally, an important parameter for the axial flux permanent magnet motor in terms of the air gap flux was analyzed. Minimum flux change was obtained with a magnet angle of 26°. The magnetic flux of the magnet-to-air-gap is under 0.5 tesla. Given the height of the coil, the magnet-to-air-gap distance most suitable for the axial flux permanent magnet motor was 4 mm. Ill. 11, bibl. 4, tabl. 2 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.280


2020 ◽  
Vol 164 ◽  
pp. 01011
Author(s):  
Vadim Bespalov ◽  
Oksana Gurova ◽  
Valeriya Baklakova

The article is devoted to the study of the air acoustic pollution reduction process for brick manufacturing enterprises based on the physical and energy approach based on the theory of dispersed systems. The authors performed physical modeling of the process taking into account the properties of all the objects taking part in it at each stage and the features of the space in which it is implemented. Based on the constructed model, a mathematical description of the probability of the process and its effectiveness is obtained.


2000 ◽  
Vol 36 (6) ◽  
pp. 1547-1554 ◽  
Author(s):  
M. Olaru ◽  
M.I. McGelp ◽  
T.J.E. Miller ◽  
J.H. Davies ◽  
K.F. Rasmussen

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3418
Author(s):  
Stanisław J. Hajnrych ◽  
Rafał Jakubowski ◽  
Jan Szczypior

The paper presents the results of a 3D FEA simulations series of a dual air gap Axial Flux (AF) electric machine with Surface-Mounted Permanent magnets (SPM) with parameterized rotor geometry. Pole number and pole span influence on back-emf, as well as cogging and ideal electromagnetic torques angular characteristics were investigated for each model with the common segmented yokeless stator with concentric windings. Synchronous and BLDC drives supply were used to estimate back-emf distortion. Ideal torque ripple and cogging torque spectra were analyzed. It was concluded that the number of poles closer to the number of slots with ~0.8 pole span tends to yield good torque density with the lowest cogging torque, back-emf distortion and ideal torque ripple.


2012 ◽  
Vol 49 (4) ◽  
pp. 3-13
Author(s):  
A. Serebryakov ◽  
N. Levin ◽  
A. Sokolov

Direct-Drive Synchronous Generators with Excitation from Strontium-Ferrite Magnets: Efficiency Improvement The authors consider the possibility to raise the specific power of synchronous generators with excitation from inexpensive permanent magnets. For this purpose, it is proposed to use tooth-wise windings and permanent magnets based on inexpensive magneto-hard material, e.g. strontium-ferrite. The magnets are to be placed between the rotor teeth, the alternate polarity of which is facing the air-gap. This provides a simpler and cheaper technology of making such a generator and improves its reliability. The proposed rational bevelling of the stator teeth not only raises the specific power of the generator but also reduces the level of noise and vibrations, extends the longevity of the magnets and bearings as well as facilitates the starting torque of the electric machine, e.g. if it is employed as wind generator.


Author(s):  
J. C. Collinger ◽  
W. C. Messner ◽  
J. A. Wickert

A novel vibration control method utilizing magnetically mounted piezoelectric actuators is described. Piezoelectric actuators are bonded to permanent magnets, which are attached to the surface of a steel cantilever beam through their magnetic attraction. The magnetic-piezoelectric control mounts are an alternative to traditional epoxy attachment methods for piezoelectrics which allows easy in-the-field reconfiguration. In model and laboratory measurements, the beam is driven through base excitation and the resonant shunt and synchronized switching techniques are applied to two magnetic-piezoelectric control mounts to attenuate vibration. The coupled system is discretized using a Galerkin finite element model that incorporates relative axial motion between the beam and the mounts, which is governed by the sticking contact stiffness per unit length of the beam-magnet interface. The control mounts are designed using a magnetic array configuration which increases the attraction force for a given magnet thickness. Results show that the magnetic-piezoelectric control mounts provide attenuation, while also providing the flexibility to easily adjust the actuators along the length of the beam.


Sign in / Sign up

Export Citation Format

Share Document