magnetic adsorption
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 33 (6) ◽  
pp. 1349-1358
Author(s):  
Yoshiyuki Higashi ◽  
◽  
Kenta Yamazaki ◽  
Arata Masuda ◽  
Nanako Miura ◽  
...  

This paper presents an attractive force estimation system and an automatic activation system for an electropermanent magnet (EPM) for an inspection UAV. Adsorption to infrastructures for inspection at a distance is extremely difficult to perform safely because the operator cannot detect the state of adsorption of the drone equipped with a magnetic adsorption device. Therefore, in this paper, we clarify the relationship between the magnetic flux density and attractive force of the EPM through experiments, and develop an estimation algorithm for the attractive force based on the results. An automatic activation system, using the induced voltage in the coil when the EPM approaches the magnetic substance, is developed and mounted on a quadrotor for a flight experiment along with the estimation system for the attractive force. The developed system is verified using flight and adsorption experiments on the quadrotor.


CONVERTER ◽  
2021 ◽  
pp. 119-132
Author(s):  
Xin Chen, Wuwei Feng, Yulian Zhang, Minglei Li, Shifei Wu

With the advancement in science and technology, a wall-climbing robot attached to the ship's outer surface is increasingly replacing humans in the rust removal. The magnetic force is not just the adsorption force but also the moving resistance force, which is currently the technological bottleneck in wall-climbing robotics based on magnetic adsorption. This paper proposes a novel wall-climbing robot based on electrically controlled permanent magnet technology to solve this problem. An electrically controlled permanent magnetic wall-climbing robot is proposed to realize the function of magnetization and demagnetization by changing the pulse current. The results of the experiments reveal that the magnetizing force is adequately adsorbed on the ship's outer surface. The magnetic attraction force is close to 0 N during demagnetization, meaning that the system is fully unloaded, as predicted by the theoretical analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xinrui Feng ◽  
Shaoshuai Sun ◽  
Ge Cheng ◽  
Lei Shi ◽  
Xiangshan Yang ◽  
...  

The magnetic adsorption material of polyaniline (PANI) with amino functional group combined with CuFe2O4 (CuFe2O4/PANI nanocomposite) has been described in this work. It has been characterized by TEM, XRD, XPS, BET, FTIR, and VSM, respectively. Significantly, it exhibits extremely high maximum adsorption capacity (322.6 mg/g) for removal of uranyl ions from wastewater at a pH of 4. The adsorption process is consistent with the quasisecond-order kinetic equation, and the isotherm and kinetic data are accurately described by the Langmuir isothermal adsorption model. Furthermore, the magnetic CuFe2O4/PANI displays stable adsorption performance for uranyl ions after five cycles of recovery in acid medium, which indicates it possesses good recovery due to its magnetism and excellent regeneration ability for reusability.


Sign in / Sign up

Export Citation Format

Share Document