Influence of Cutting Conditions on the Surface Roughness of Titanium-Alloy Parts Produced by Additive and Traditional Methods

2021 ◽  
Vol 41 (5) ◽  
pp. 434-436
Author(s):  
K. R. Muratov ◽  
E. A. Gashev ◽  
T. R. Ablyaz ◽  
A. A. Panteleev
2011 ◽  
Vol 418-420 ◽  
pp. 1307-1311
Author(s):  
Jun Hu ◽  
Yong Jie Bao ◽  
Hang Gao ◽  
Ke Xin Wang

The experiments were carried out in the paper to investigate the effect of adding hydrogen in titanium alloy TC4 on its machinability. The hydrogen contents selected were 0, 0.25%, 0.49%, 0.63%, 0.89% and 1.32%, respectively. Experiments with varing hydrogen contents and cutting conditions concurrently. Experimental results showed that the cutting force of the titanium alloy can be obviously reduced and the surface roughness can be improved by adding appropriate hydrogen in the material. In the given cutting condition, the titanium alloy TC4 with 0.49% hydrogen content showed better machinability.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6917
Author(s):  
Kamil Leksycki ◽  
Agnieszka Kaczmarek-Pawelska ◽  
Kamil Ochał ◽  
Andrzej Gradzik ◽  
Danil Yurievich Pimenov ◽  
...  

The influence of cooling conditions and surface topography after finish turning of Ti6Al4V titanium alloy on corrosion resistance and surface bioactivity was analyzed. The samples were machined under dry and minimum quantity lubrication (MQL) conditions to obtain different surface roughness. The surface topographies of the processed samples were assessed and measured using an optical profilometer. The produced samples were subjected to electrochemical impedance spectroscopy (EIS) and corrosion potential tests (Ecorr) in the presence of simulated body fluid (SBF). The surface bioactivity of the samples was assessed on the basis of images from scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) analysis. The inspection of the surfaces of samples after turning under dry and MQL conditions revealed unevenly distributed precipitation of hydroxyapatite compounds (Ca/P) with a molar ratio in the range of 1.73–1.97. Regardless of the cutting conditions and surface roughness, the highest values of Ecorr ~0 mV were recorded on day 7 of immersion in the SBF solution. The impedance characteristics showed that, compared to the MQL conditions, surfaces machined under dry conditions were characterized by greater resistance and the presence of a passive layer on the processed surface. The main novelty of the paper is the study of the effect of ecological machining conditions, namely, dry and MQL cutting on the corrosion resistance and surface bioactivity of Ti6Al4V titanium alloy after finish turning. The obtained research results have practical significance. They can be used by engineers during the development of technological processes for medical devices made of Ti6Al4V alloy to obtain favorable functional properties of these devices.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


Author(s):  
B. El Aoud ◽  
M. Boujelbene ◽  
A. Boudjemline ◽  
E. Bayraktar ◽  
S. Ben Salem ◽  
...  

2013 ◽  
Vol 404 ◽  
pp. 3-9 ◽  
Author(s):  
Nihat Tosun ◽  
Ihsan Dagtekin ◽  
Latif Ozler ◽  
Ahmet Deniz

Abrasive waterjet machining is one of the non-traditional methods of the recent years which found itself a wide area of application in the industry for machining of different materials. In this paper, the surface roughness of 6061-T6 and 7075-T6 aluminum alloys are being cut with abrasive waterjet is examined experimentally. The experiments were conducted with different waterjet pressures and traverse speeds. It has been found that the surface roughness obtained by cutting material with high mechanical properties is better than that of obtained by cutting material with inferior mechanical properties.


Author(s):  
Issam Abu-Mahfouz ◽  
Amit Banerjee ◽  
A. H. M. Esfakur Rahman

The study presented involves the identification of surface roughness in Aluminum work pieces in an end milling process using fuzzy clustering of vibration signals. Vibration signals are experimentally acquired using an accelerometer for varying cutting conditions such as spindle speed, feed rate and depth of cut. Features are then extracted by processing the acquired signals in both the time and frequency domain. Techniques based on statistical parameters, Fast Fourier Transforms (FFT) and the Continuous Wavelet Transforms (CWT) are utilized for feature extraction. The surface roughness of the machined surface is also measured. In this study, fuzzy clustering is used to partition the feature sets, followed by a correlation with the experimentally obtained surface roughness measurements. The fuzzifier and the number of clusters are varied and it is found that the partitions produced by fuzzy clustering in the vibration signal feature space are related to the partitions based on cutting conditions with surface roughness as the output parameter. The results based on limited simulations are encouraging and work is underway to develop a larger framework for online cutting condition monitoring system for end milling.


2013 ◽  
Vol 845 ◽  
pp. 708-712 ◽  
Author(s):  
P.Y.M. Wibowo Ndaruhadi ◽  
S. Sharif ◽  
M.Y. Noordin ◽  
Denni Kurniawan

Surface roughness indicates the damage of the bone tissue due to bone machining process. Aiming at inducing the least damage, this study evaluates the effect of some cutting conditions to the surface roughness of machined bone. In the turning operation performed, the variables are cutting speed (26 and 45 m/min), feed (0.05 and 0.09 mm/rev), tool type (coated and uncoated), and cutting direction (longitudinal and transversal). It was found that feed did not significantly influence surface roughness. Among the influencing factor, the rank is tool type, cutting speed, and cutting direction.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


Sign in / Sign up

Export Citation Format

Share Document