Wave Breaking Type as a Typical Sign of Nonlinear Wave Transformation Stage in Coastal Zone

2020 ◽  
Vol 28 (1) ◽  
pp. 75-82
Author(s):  
Ya. V. Saprykina ◽  
S. Yu. Kuznetsov ◽  
O. A. Kuznetsova ◽  
I. V. Shugan ◽  
Yang-Yih Chen
Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


Oceanology ◽  
2013 ◽  
Vol 53 (4) ◽  
pp. 422-431 ◽  
Author(s):  
Ya. V. Saprykina ◽  
S. Yu. Kuznetsov ◽  
N. K. Andreeva ◽  
M. N. Shtremel

Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


Author(s):  
Yana Saprykina ◽  
Sergey Kuznetsov ◽  
Margarita Shtremel

Based on experimental data, the problem of parametrization of spatial variation of the phase shift (biphase) between the first and second nonlinear harmonics of wave motion during wave transformation over sloping bottom in the coastal zone is discussed. It is revealed that the biphase values vary in the range [–π/2, π/2]. Biphase variations rigorously follow fluctuations in amplitudes of the first and second harmonics and the periodicity of energy exchange between them. The empirical relation applied in modern practice to calculate the biphase, which depends on the Ursell number, is incorrect for calculating the biphase for wave evolution in the coastal zone, because it does not take into account periodic energy exchange between the nonlinear harmonics. The new approximations of the biphase values for typical scenarios of wave transformations are suggested. It was demonstrated that the biphase of breaking waves defines breaking index and breaking type.


2016 ◽  
Vol 23 (s1) ◽  
pp. 44-51 ◽  
Author(s):  
Qian-lu Xiao ◽  
Chun-hui Li ◽  
Xiao-yan Fu ◽  
Mei-ju Wang

Abstract The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.


Author(s):  
Fuxian Gong ◽  
Manhar R. Dhanak

Abstract Direct numerical simulation (DNS), based on solution of the Navier Stokes equations, is used to study the characteristics of the transformation of monochromatic waves over a simplified fringing reef, including wave shoaling, and wave breaking that occurs under certain circumstances. The reef geometry involves a sloped plane beach extended with a simple submerged horizontal reef flat. The characteristics are studied for several case studies involving a selection of submergence depths on the reef flat and for a range of incident wave conditions, corresponding to nonbreaking, a spilling breaker and a plunging breaker, are considered. The results are compared with those of laboratory experiments (Kouvaras and Dhanak, 2018). Consistent with other studies, generation of harmonics of the fundamental wave frequency is found to accompany the wave transformation over the reef and the process of transfer of energy through wave breaking. The energy flux decreases dramatically in the onshore direction when the waves break. The more severe the wave breaking process, the greater the decrease in energy flux, particularly in the wave shoaling process. Most of the wave energy is carried by the first harmonic throughout its passage over the fringing reef. In nonbreaking waves, the energy gradually transfers from the first harmonic to the second harmonic due to bottom effects in terms of flat wave troughs and secondary waves. The further the distance away from the fore edge of the reef, the larger the percentage of the transmission, resulting in a single dominant harmonic frequency at the end of the wave surfing zone. For breaking waves, the energy carried by the first harmonic gradually decreases in the onshore direction. Energy transmission between harmonics is not as efficient as nonbreaking waves, while wave dissipation is significant in the wave breaking process.


Author(s):  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Valentina Volkova

Type of wave breaking - plunging or spilling - depends on symmetry of waves. The spilling waves are asymmetric against horizontal axis and are practically symmetric against vertical axis so the phase shift between first and second nonlinear harmonics (or biphase) is close to zero. The plunging breaking waves have larger asymmetry against vertical axis, (biphase is close to -pi/2), and near symmetric on horizontal axis (close to saw-toothed form). Non-linear wave transformation influences on depth-induced wave breaking. Breaking index depends on relation of wave energy in frequency range of second nonlinear harmonics to wave energy in frequency range of main harmonic and on biphase. The dissipation rate of spilling breaking waves energy quadratically depends on frequency, while in plunging breaking, this dependency is practically linear for all frequencies.


Author(s):  
Yana Saprykina ◽  
Olga Kuznetsova

On the base of field experimental data were confirmed that the main wave parameters for cross-shore sediment transport are the significant wave height, spectral peak period and wave steepness. Waves with narrowband spectrum more effect on changes of underwater profile. For a qualitative assessment of erosion/accumulation the Dean parameter, the Ursell and Iribarren numbers can be used. However the physical processes of wave transformation play an important role. The most significant are nonlinear wave transformation and wave breaking, especially the type of wave breaking.


Sign in / Sign up

Export Citation Format

Share Document