scholarly journals Metagenomics to Unlock the Biotechnological Potential of Marine Environments

Author(s):  
Michele de Cássia Pereira e Silva
Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 522
Author(s):  
Patrícia Concórdio-Reis ◽  
Vítor D. Alves ◽  
Xavier Moppert ◽  
Jean Guézennec ◽  
Filomena Freitas ◽  
...  

Marine environments comprise almost three quarters of Earth’s surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5–2.1 wt%), pyruvyl (0.2–4.9 wt%), succinyl (1–1.8 wt%), and sulfate (1.98–3.43 wt%); and few peptides (1.72–6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32–53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.


Alloy Digest ◽  
2015 ◽  
Vol 64 (11) ◽  

Abstract Nibron Special is an extra high-strength nickel bronze that is corrosion resistant in both marine environments and industrial media. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as machining and joining. Filing Code: Cu-844. Producer or source: Columbia Metals Ltd.


2019 ◽  
pp. 12-29
Author(s):  
R.A. Sidorov ◽  
A.Yu. Starikov ◽  
A.S. Voronkov ◽  
A.S. Medvedeva ◽  
Z.V. Krivova ◽  
...  

As a result of screening of spore-forming bacteria, a B-13186 strain with a wide spectrum of antagonistic activity identified as Brevibacillus laterosporus by the analysis of sequences of variable sites of 16S rRNA was selected. Morphological, cultural and biochemical characteristics of the strain were studied. A distinctive feature of the strain is the presence of a canoe-like inclusion formed in sporangia and attached to the mature spore, as well as the ability to synthesize round-shaped crystalline inclusions. The strain was shown to be active against various species of gram-positive bacteria including A search for strains capable of simultaneously producing high amounts of several biologically valuable compounds and/or having high biomass productivity has been carried out. The growth characteristics and biochemical composition of 12 microalgae and cyanobacteria strains from the IPPAS Collection in the exponential and stationary growth phases were studied. All the strains had high growth rates (doubling time 6-22 h). The strains of Cyanobacterium sp. IPPAS B-1200, Chlorella sp. IPPAS C-1210, Nannochloris sp. IPPAS C-1509, Cyanidium caldarium IPPAS P-510 and Vischeria sp. IPPAS H-242 demonstrated the highest biotechnological potential and can be used for the production of various types of biofuel, pigments, feed and food additives, including those with high content of eicosapentaenoic (20:5 Δ5,8,11,14,17) acid content. microalgae, cyanobacteria, biochemical composition, fatty acids, valuable metabolites, growth characteristics This work was supported by a grant from the Russian Science Foundation [no. 14-14-00904]


2019 ◽  
Vol 26 (10) ◽  
pp. 720-742 ◽  
Author(s):  
Kaushik Das ◽  
Karabi Datta ◽  
Subhasis Karmakar ◽  
Swapan K. Datta

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.


2015 ◽  
Vol 55 ◽  
pp. 373
Author(s):  
Stephen Woodcock ◽  
Bojana Manojlovic ◽  
Mark Baird ◽  
Peter Ralph

Sign in / Sign up

Export Citation Format

Share Document