A Poisson-Pareto model of Chl-a fluorescence signals in marine environments

2015 ◽  
Vol 55 ◽  
pp. 373
Author(s):  
Stephen Woodcock ◽  
Bojana Manojlovic ◽  
Mark Baird ◽  
Peter Ralph
2002 ◽  
Vol 29 (10) ◽  
pp. 1141 ◽  
Author(s):  
Govindjee ◽  
Manfredo J. Seufferheld

This paper deals first with the early, although incomplete, history of photoinhibition, of 'non-QA-related chlorophyll (Chl) a fluorescence changes', and the xanthophyll cycle that preceded the discovery of the correlation between non-photochemical quenching of Chl a fluorescence (NPQ) and conversion of violaxanthin to zeaxanthin. It includes the crucial observation that the fluorescence intensity quenching, when plants are exposed to excess light, is indeed due to a change in the quantum yield of fluorescence. The history ends with a novel turn in the direction of research — isolation and characterization of NPQ xanthophyll-cycle mutants of Chlamydomonas reinhardtii Dangeard and Arabidopsis thaliana (L.) Heynh., blocked in conversion of violaxanthin to zeaxanthin, and zeaxanthin to violaxanthin, respectively. In the second part of the paper, we extend the characterization of two of these mutants (npq1, which accumulates violaxanthin, and npq2, which accumulates zeaxanthin) through parallel measurements on growth, and several assays of PSII function: oxygen evolution, Chl a fluorescence transient (the Kautsky effect), the two-electron gate function of PSII, the back reactions around PSII, and measurements of NPQ by pulse-amplitude modulation (PAM 2000) fluorimeter. We show that, in the npq2 mutant, Chl a fluorescence is quenched both in the absence and presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). However, no differences are observed in functioning of the electron-acceptor side of PSII — both the two-electron gate and the back reactions are unchanged. In addition, the role of protons in fluorescence quenching during the 'P-to-S' fluorescence transient was confirmed by the effect of nigericin in decreasing this quenching effect. Also, the absence of zeaxanthin in the npq1 mutant leads to reduced oxygen evolution at high light intensity, suggesting another protective role of this carotenoid. The available data not only support the current model of NPQ that includes roles for both pH and the xanthophylls, but also are consistent with additional protective roles of zeaxanthin. However, this paper emphasizes that we still lack sufficient understanding of the different parts of NPQ, and that the precise mechanisms of photoprotection in the alga Chlamydomonas may not be the same as those in higher plants.


2011 ◽  
Vol 8 (8) ◽  
pp. 2391-2406 ◽  
Author(s):  
A. Mignot ◽  
H. Claustre ◽  
F. D'Ortenzio ◽  
X. Xing ◽  
A. Poteau ◽  
...  

Abstract. In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m−3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m−3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape parameters. This model is then used to calibrate a fluorescence profile in Chl-a units. The validation of the approach provides satisfactory results with a median absolute percent deviation of 33 % when comparing the HPLC Chl-a profiles to the Chl-a-calibrated fluorescence. The proposed approach thus opens the possibility to produce Chl-a climatologies from uncalibrated fluorescence profile databases that have been acquired in the past and to which numerous new profiles will be added, thanks to the recent availability of autonomous platforms (profiling floats, gliders and animals) instrumented with miniature fluorometers.


2002 ◽  
Vol 29 (4) ◽  
pp. 425 ◽  
Author(s):  
Govindjee ◽  
Paul Spilotro

A major photoprotective mechanism that plants employ against excess light involves interplay between the xanthophyll cycle and the accumulation of protons. Using mutants in the xanthophyll cycle, the roles of violaxanthin, antheraxanthin and zeaxanthin have already been well established. In this paper, we present data on intact leaves of a mutant [coupling factor quick recovery mutant (cfq); atpC1:E244K] of Arabidopsis thaliana that we expected, based on 515-nm absorbance changes (Gabrys et al. 1994, Plant Physiology 104, 769–776), to have differences in light-induced ΔpH. The significance of this paper is: (i) it is the first study of the photoprotective energy dissipation involving a mutant of the pH gradient; it establishes that protons play an important role in the pattern of non-photochemical quenching (NPQ) of chlorophyll (Chl) a fluorescence; and (ii) differences between the cfq and the wild type (wt) are observed only under subsaturating light intensities, and are strongest in the initial few minutes of the induction period. Our results on light-intensity dependent Chl* a fluorescence transients (the Kautsky effect), and on NPQ of Chl a fluorescence, at 50–250 μmol photons m–2 s–1 demonstrate: (i) the ‘P-to-S’ (or ‘T’) decay, known to be related to [H+] (Briantais et al. 1979, Biochimica et Biophysica Acta 548, 128–138), is slowed in the mutant; and (ii) the pattern of NPQ kinetics is different in the initial 100 s — in the wt leaves, there is a marked rise and decline, and in the cfq mutant, there is a slowed rise. These differences are absent at 750 μmol photons m–2 s–1. Pre-illumination and nigericin (an uncoupler that dissipates the proton gradient) treatment of the cfq mutant, which has lower ΔpH relative to wild type, confirm the conclusion that protons play an important role in the quenching of Chl a fluorescence.


2004 ◽  
Vol 70 (5) ◽  
pp. 683-694 ◽  
Author(s):  
C.A. Lange ◽  
L. Weissflog ◽  
R.J. Strasser ◽  
G.H.J. Krüger ◽  
A. Pfennigsdorff ◽  
...  

2020 ◽  
Author(s):  
Shari Van Wittenberghe ◽  
Valero Laparra ◽  
Nacho Ignacio Garcia ◽  
Luis Alonso ◽  
Beatriz Fernandez Marín ◽  
...  

<p>The solar energy absorbed by the vegetation light-harvesting antenna complexes supplies the photosynthetic light reactions with a highly efficient transfer of quantum energy. The absorbed energy is efficiently transferred from one molecule to another, until being used by the reaction centres for the further carbon reactions. The energy transfer to the reaction centres is hereby highly regulated by the variable aggregation of pigments in the antenna complexes, allowing for quick and slower adjustments according to the incoming solar radiance. To control and protect the pigment antenna and the reaction centres from a potentially harmful solar radiance excess, these regulated photoprotective mechanisms are activated at different time scales at the antenna level, allowing vegetation to adapt to changing light conditions. The understanding of these energy regulative processes from optical measurements is essential in order to monitor plants' adaptation strategies to stressful environments and changing climates from remote sensing data.</p><p>Using high-spectral resolution leaf spectroscopy in a controlled laboratory set-up, we have observed detailed and significant absorbance shifts controlled by the pigment antennas themselves. Simultaneous measurements of both upward and downward spectrally-resolved leaf radiance (Lup(λ), Ldw(λ), W m<sup>-2</sup> sr<sup>-1</sup> nm<sup>-1</sup>) allowed us to observe the specific absorbance changes at leaf level, including changes in chlorophyll (Chl) a fluorescence emission (Fup(λ), Fdw(λ), W m<sup>-2</sup> sr<sup>-1</sup> nm<sup>-1</sup>). Interestingly, these changes due to shifts in energy redistribution were: 1) observed in the PAR region and even far beyond 700 nm, and 2) indicated a prominent role of both Carotenoid and Chl a molecules in the creation of alternative energy sinks, i.e. constraining the energy transfer to the reaction centres. Hereby, a significant redistribution of photosynthetic light energy was observed in the 500-800 nm range, highlighting this spectral region to be of potential interest for remote sensing. We further revealed that these energy redistributions do not necessary occur in parallel with Chl a fluorescence changes, illustrating the importance of different energy redistribution mechanisms constraining the photosynthetic light reactions. To conclude, a good quantitative understanding of all mechanisms of energy regulation in plants based on VIS-NIR wavelengths is essential 1) to be able to understand these trends using remote sensing data, 2) to better model the adaptations of vegetation to changing climate and environmental conditions, and 3) potentially better predict future trends in dynamic global vegetation models.</p>


Sign in / Sign up

Export Citation Format

Share Document