scholarly journals STERILIZATION OF SUGARCANE JUICE BY OZONE TREATMENT AND FURTHER FERMENTATION OF JUICE FOR PRODUCTION OF ETHANOL

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1261-1268
Author(s):  
Shu Otani ◽  
Dang-Trang Nguyen ◽  
Kozo Taguchi

In this study, a portable and disposable paper-based microbial fuel cell (MFC) was fabricated. The MFC was powered by Rhodopseudomonas palustris bacteria (R. palustris). An activated carbon sheet-based anode pre-loaded organic matter (starch) and R. palustris was used. By using starch in the anode, R. palustris-loaded on the anode could be preserved for a long time in dry conditions. The MFC could generate electricity on-demand activated by adding water to the anode. The activated carbon sheet anode was treated by UV-ozone treatment to remove impurities and to improve its hydrophilicity before being loaded with R. palustris. The developed MFC could generate the maximum power density of 0.9 μW/cm2 and could be preserved for long-term usage with little performance degradation (10% after four weeks).


LWT ◽  
2021 ◽  
pp. 111317
Author(s):  
Ayon Tarafdar ◽  
Barjinder Pal Kaur

2007 ◽  
Vol 25 (1) ◽  
pp. 73-74
Author(s):  
K Subbannayya ◽  
GK Bhat ◽  
S Shetty ◽  
VG Junu
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 847
Author(s):  
Anita Zapałowska ◽  
Natalia Matłok ◽  
Miłosz Zardzewiały ◽  
Tomasz Piechowiak ◽  
Maciej Balawejder

The aim of this research was to show the effect of the ozonation process on the quality of sea buckthorn (Hippophae rhamnoides L.). The quality of the ozonated berries of sea buckthorn was assessed. Prior to and after the ozone treatment, a number of parameters, including the mechanical properties, moisture content, microbial load, content of bioactive compounds, and composition of volatile compounds, were determined. The influence of the ozonation process on the composition of volatile compounds and mechanical properties was demonstrated. The ozonation had negligible impact on the weight and moisture of the samples immediately following the treatment. Significant differences in water content were recorded after 7 days of storage. It was shown that the highest dose of ozone (concentration and process time) amounting to 100 ppm for 30 min significantly reduced the water loss. The microbiological analyses showed the effect of ozone on the total count of aerobic bacteria, yeast, and mold. The applied process conditions resulted in the reduction of the number of aerobic bacteria colonies by 3 log cfu g−1 compared to the control (non-ozonated) sample, whereas the number of yeast and mold colonies decreased by 1 log cfu g−1 after the application of 100 ppm ozone gas for 30 min. As a consequence, ozone treatment enhanced the plant quality and extended plant’s storage life.


Author(s):  
Woojin Shin ◽  
Wonsik Kim ◽  
Seungsun Choi ◽  
Jaewon Oh ◽  
Mee-Yi Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document