Bone Resorption in Chronic Otitis Media: A Light-microscopical and Histochemical Investigation of Acid Phosphatase Activity

1975 ◽  
Vol 79 (3-6) ◽  
pp. 400-408 ◽  
Author(s):  
J. Thomsen ◽  
P. Bretlau ◽  
H. K. Kristensen
1979 ◽  
Vol 88 (5) ◽  
pp. 693-700 ◽  
Author(s):  
Bruce J. Gantz ◽  
Jerry Maynard ◽  
Robert M. Bumsted ◽  
Cheng Chun Huang ◽  
Maxwell Abramson

Bone resorption is an important aspect of chronic otitis media contributing to many complications of this disease. It is postulated that the mechanism of this localized destructive process is chemical in origin. Collagenase, lysosomal enzymes, prostaglandins, and other cell mediators are thought to induce bone resorption, but the site of action and cellular origin of these substances remains unclear. In this report, we demonstrate the location and attempt to delineate the cellular origin of two enzymes, collagenase and the lysosomal enzyme acid phosphatase in guinea pig temporal bones and human ossicles from ears containing chronic otitis media. Tissue localization of these enzymes identifies sites of active bone resorption and demonstrates the cells initiating this process. Using immunohistochemical and immunocytochemical techniques, collagenase was seen surrounding mononuclear inflammatory cells of granulation tissue at bone resorbing margins and at the periphery of osteocyte lacunae adjacent to resorbing areas. Electron microscopic data suggests that collagenase is an extracellular enzyme found at the periphery of osteocytes. In addition, abundant acid phosphatase activity was seen in the same cells that exhibited collagenase staining, lending credence to the destructive function of these cells. The chronic inflammatory reaction found in chronic otitis media appears to activate bone destruction through the dynamic activity of mononuclear inflammatory cells and stimulates bone cells to increase their destructive biochemical functions.


1965 ◽  
Vol 33 (3) ◽  
pp. 501-NP ◽  
Author(s):  
J. P. MANNING ◽  
B. G. STEINETZ ◽  
MARGARET C. BUTLER ◽  
SARA PRIESTER

SUMMARY The histochemical changes in acid phosphatase activity of the pubic joint of ovariectomized mice treated with various hormones have been studied. Oestrogen administration resulted in marked increase in acid phosphatase activity of the osteoclasts, osteocytes, chondroclasts, young chondrocytes and chondroblasts in addition to bone resorption and transformation of the hyaline cartilage caps of the pubic bones into fibrocartilage. Relaxin, progesterone and cortisone acetate failed to influence the quantity or distribution of the enzyme in the pubic joint of mice primed with oestrogen. Progesterone and cortisone inhibited ligament formation produced by relaxin in oestrogen-treated animals. The results are discussed in relation to the activities of the hormones on the symphysis pubis of the mouse.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Li-juan Chai ◽  
Yue Zhang ◽  
Pan-yang Zhang ◽  
Ya-nan Bi ◽  
Xiao-mei Yuan ◽  
...  

We investigated the beneficial effects and underlying mechanisms of Zhuanggu Guanjie (ZGGJ) pill in osteoporosis in vitro and in vivo. Bone marrow macrophages from 4–6-week-old mice were cultured in the presence of macrophage colony-stimulating factor (15 ng/mL) and receptor activator of nuclear factor-κB ligand (30 ng/mL). Osteoclast differentiation was determined by quantification of tartrate-resistant acid phosphatase activity. Gelatin zymography was used to detect the activity of matrix metalloproteinases in osteoclasts. Ovariectomized rats were administered orally with estradiol valerate or ZGGJ for 8 weeks. Blood was collected to measure serum indices. Tibiae were harvested to carry out bone microcomputed tomography scanning, histomorphological analysis, and bone strength determination. ZGGJ inhibited tartrate-resistant acid phosphatase activity, matrix metalloproteinase 9 expression, and bone resorption in vitro. At doses of 0.55, 1.1, and 2.2 g/kg, ZGGJ exerted significant osteoprotective effects including inhibition of bone turnover markers and improved tibia bone strength in ovariectomized rats. Microcomputed tomographic analysis showed that ZGGJ improved the trabecular architecture with increased connectivity density and trabecular thickness and decreased trabecular spacing. These results revealed that ZGGJ prevents bone loss induced by ovariectomy in rats and that inhibition of bone resorption is involved in the bone-protective effects of ZGGJ.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


2008 ◽  
Vol 39 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Tatiana Salles de Souza Malaspina ◽  
Célio Xavier dos Santos ◽  
Ana Paula Campanelli ◽  
Francisco Rafael Martins Laurindo ◽  
Mari Cleide Sogayar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document