Cerebral white matter hyperintensities (WMH): an analysis of cerebrovascular risk factors in Lebanon

2014 ◽  
Vol 124 (11) ◽  
pp. 799-805 ◽  
Author(s):  
Souheil Gebeily ◽  
Youssef Fares ◽  
Manal Kordahi ◽  
Pierre Khodeir ◽  
Ghattas Labaki ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michele Veldsman ◽  
Emilio Werden ◽  
Natalia Egorova ◽  
Mohamed Salah Khlif ◽  
Amy Brodtmann

Abstract Executive dysfunction affects 40% of stroke patients, but is poorly predicted by characteristics of the stroke itself. Stroke typically occurs on a background of cerebrovascular burden, which impacts cognition and brain network structural integrity. We used structural equation modelling to investigate whether measures of white matter microstructural integrity (fractional anisotropy and mean diffusivity) and cerebrovascular risk factors better explain executive dysfunction than markers of stroke severity. 126 stroke patients (mean age 68.4 years) were scanned three months post-stroke and compared to 40 age- and sex-matched control participants on neuropsychological measures of executive function. Executive function was below what would be expected for age and education level in stroke patients as measured by the organizational components of the Rey Complex Figure Test, F(3,155) = 17, R2 = 0.25, p < 0.001 (group significant predictor at p < 0.001) and the Trail-Making Test (B), F(3,157) = 3.70, R2 = 0.07, p < 0.01 (group significant predictor at p < 0.001). A multivariate structural equation model illustrated the complex relationship between executive function, white matter integrity, stroke characteristics and cerebrovascular risk (root mean square error of approximation = 0.02). Pearson’s correlations confirmed a stronger relationship between executive dysfunction and white matter integrity (r = − 0.74, p < 0.001), than executive dysfunction and stroke severity (r = 0.22, p < 0.01). The relationship between executive function and white matter integrity is mediated by cerebrovascular burden. White matter microstructural degeneration of the superior longitudinal fasciculus in the executive control network better explains executive dysfunction than markers of stroke severity. Executive dysfunction and incident stroke can be both considered manifestations of cerebrovascular risk factors.


2020 ◽  
Author(s):  
Michele Veldsman ◽  
Petya Kindalova ◽  
Masud Husain ◽  
Ioannis Kosmidis ◽  
Thomas E. Nichols

AbstractObjectivesWhite matter hyperintensities (WMHs) are considered macroscale markers of cerebrovascular burden and are associated with increased risk of vascular cognitive impairment and dementia. However, the spatial location of WMHs has typically been considered in broad categories of periventricular versus deep white matter. The spatial distribution of WHMs associated with individual cerebrovascular risk factors (CVR), controlling for frequently comorbid risk factors, has not been systematically investigated at the population level in a healthy ageing cohort. Furthermore, there is an inconsistent relationship between total white matter hyperintensity load and cognition, which may be due to the confounding of several simultaneous risk factors in models based on smaller cohorts.MethodsWe examined trends in individual CVR factors on total WMH burden in 13,680 individuals (aged 45-80) using data from the UK Biobank. We estimated the spatial distribution of white matter hyperintensities associated with each risk factor and their contribution to explaining total WMH load using voxel-wise probit regression and univariate linear regression. Finally, we explored the impact of CVR-related WMHs on speed of processing using regression and mediation analysis.ResultsContrary to the assumed dominance of hypertension as the biggest predictor of WMH burden, we show associations with a number of risk factors including diabetes, heavy smoking, APOE ε4/ε4 status and high waist-to-hip ratio of similar, or greater magnitude to hypertension. The spatial distribution of WMHs varied considerably with individual cerebrovascular risk factors. There were independent effects of visceral adiposity, as measured by waist-to-hip ratio, and carriage of the APOE ε4 allele in terms of the unique spatial distribution of CVR-related WMHs. Importantly, the relationship between total WMH load and speed of processing was mediated by waist-to-hip ratio suggesting cognitive consequences to WMHs associated with excessive visceral fat deposition.ConclusionWaist-to-hip ratio, diabetes, heavy smoking, hypercholesterolemia and homozygous APOE ε4 status are important risk factors, beyond hypertension, associated with WMH total burden and warrant careful control across ageing. The spatial distribution associated with different risk factors may provide important clues as to the pathogenesis and cognitive consequences of WMHs. High waist-to-hip ratio is a key risk factor associated with slowing in speed of processing. With global obesity levels rising, focused management of visceral adiposity may present a useful strategy for the mitigation of cognitive decline in ageing.


Neurology ◽  
2006 ◽  
Vol 67 (5) ◽  
pp. 830-833 ◽  
Author(s):  
V. Stenset ◽  
L. Johnsen ◽  
D. Kocot ◽  
A. Negaard ◽  
A. Skinningsrud ◽  
...  

2017 ◽  
Vol 38 (2) ◽  
pp. 250-261 ◽  
Author(s):  
Santiago Rojas ◽  
Anna Brugulat-Serrat ◽  
Nuria Bargalló ◽  
Carolina Minguillón ◽  
Alan Tucholka ◽  
...  

Cerebral white matter hyperintensities are believed the consequence of small vessel disease and are associated with risk and progression of Alzheimer's disease. The ɛ4 allele of the APOE gene is the major factor accountable for Alzheimer's disease heritability. However, the relationship between white matter hyperintensities and APOE genotype in healthy subjects remains controversial. We investigated the association between APOE-ɛ4 and vascular risk factors with white matter hyperintensities, and explored their interactions, in a cohort of cognitively healthy adults (45–75 years). White matter hyperintensities were assessed with the Fazekas Scale from magnetic resonance images (575 participants: 74 APOE-ɛ4 homozygotes, 220 heterozygotes and 281 noncarriers) and classified into normal (Fazekas < 2) and pathological (≥2). Stepwise logistic regression was used to study the association between pathological Fazekas and APOE genotype after correcting for cardiovascular and sociodemographic factors. APOE-ɛ4 homozygotes, but not heterozygotes, bear a significantly higher risk (OR 3.432; 95% CI [1.297–9.082]; p = 0.013) of displaying pathological white matter hyperintensities. As expected, aging, hypertension and cardiovascular and dementia risk scales were also positively associated to pathological white matter hyperintensities, but these did not modulate the effect of APOE-ɛ4/ɛ4. In subjects at genetic risk of developing Alzheimer's disease, the control of modifiable risk factors of white matter hyperintensities is of particular relevance to reduce or delay dementia’s onset.


Sign in / Sign up

Export Citation Format

Share Document