Endoscopic Ultrasonography in Analysing Peri-Intestinal Lymph Node Abnormality: Preliminary Results of Studies in Vitro and in Vivo

1986 ◽  
Vol 21 (sup123) ◽  
pp. 158-163 ◽  
Author(s):  
T. L. Tio ◽  
G. N. J. Tytgat
1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S285-S309 ◽  
Author(s):  
Kurt Ahrén ◽  
Per Olof Janson ◽  
Gunnar Selstam

ABSTRACT This paper discusses in vivo and in vitro ovarian perfusion systems described so far in the literature. The interest is not focussed primarily on the results of these studies but rather on the advantages and disadvantages of the techniques and methods used. Another part of the paper summarizes the points which are most important, in our opinion, to take into consideration when developing an in vitro perfusion technique of the ovary. The last part of the paper gives a description of and some preliminary results from an in vitro perfusion system of the rabbit ovary which is under development in this laboratory.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2001 ◽  
Vol 114 (19) ◽  
pp. 3463-3477
Author(s):  
Shulamit B. Wallach-Dayan ◽  
Valentin Grabovsky ◽  
Jürgen Moll ◽  
Jonathan Sleeman ◽  
Peter Herrlich ◽  
...  

Cell motility is an essential element of tumor dissemination, allowing organ infiltration by cancer cells. Using mouse LB lymphoma cells transfected with standard CD44 (CD44s) cDNA (LB-TRs cells) or with the alternatively spliced CD44 variant CD44v4-v10 (CD44v) cDNA (LB-TRv cells), we explored their CD44-dependent cell migration. LB-TRv cells, but not LB-TRs or parental LB cells, bound soluble hyaluronic acid (HA) and other glycosaminoglycans (GAGs), and exclusively formed, under physiological shear force, rolling attachments on HA substrate. Furthermore, LB-TRv cells, but not LB-TRs cells or their parental LB cells, displayed accelerated local tumor formation and enhanced accumulation in the peripheral lymph nodes after s.c. inoculation. The aggressive metastatic behavior of i.v.-injected LB-TRV cells, when compared with that of other LB-transfectants, is attributed to more efficient migration to the lymph nodes, rather than to local growth in the lymph node. Injection of anti-CD44 monoclonal antibody or of the enzyme hyaluronidase also prevented tumor growth in lymph nodes of BALB/c mice inoculated with LB-TRv cells. The enhanced in vitro rolling and enhanced in vivo local tumor growth and lymph node invasion disappeared in LB cells transfected with CD44v cDNA bearing a point mutation at the HA binding site, located at the distal end of the molecule constant region. These findings show that the interaction of cell surface CD44v with HA promotes cell migration both in vitro and in vivo, and they contribute to our understanding of the mechanism of cell trafficking, including tumor spread.


1968 ◽  
Vol 127 (2) ◽  
pp. 307-325 ◽  
Author(s):  
Vera S. Byers ◽  
Eli E. Sercarz

A set of conditions has been described under which primed rabbit lymph nodes produce a secondary antibody response upon in vivo stimulation with a large dose of antigen, but are subsequently "exhausted;" that is, lymph node cultures prepared at intervals following the booster injection cannot be re-stimulated to display tertiary responses. Rabbits given 100-fold less antigen in the booster inoculum were able to give a tertiary response upon in vitro challenge. The system used permits neither induction nor continuation of a primary response to BSA in vitro. Since it could be demonstrated that no memory cells were generated by the booster injection within the intervals between in vivo injection and culture, the tertiary response in nonexhausted nodes must have been due to residual memory cells which remained untriggered by the in vivo booster injection. The unresponsive state was not caused by antibody feedback. These results are interpreted to mean that a population of memory cells can be exhausted by a supraoptimal dose of antigen, rendering the node temporarily incapable of further response. This implies that long-lived memory is not due to asymmetric division of memory cells. The source and fate of memory cells is discussed with regard to this evidence.


Sign in / Sign up

Export Citation Format

Share Document