scholarly journals Plant-Derived Extracellular Vesicles: Current Findings,Challenges, and Future Applications

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1522
Author(s):  
Bin Zeng ◽  
Hailong Wang ◽  
Junyi Luo ◽  
Meiying Xie ◽  
Zhengjiang Zhao ◽  
...  

Secretory immunoglobulin A (SIgA) plays an important role in gut acquired immunity and mucosal homeostasis. Breast milk is the irreplaceable nutritional source for mammals after birth. Current studies have shown the potential functional role of milk-derived small extracellular vesicles (sEVs) and their RNAs cargo in intestinal health and immune regulation. However, there is a lack of studies to demonstrate how milk-derived sEVs affect intestinal immunity in recipient. In this study, through in vivo experiments, we found that porcine milk small extracellular vesicles (PM-sEVs) promoted intestinal SIgA levels, and increased the expression levels of polymeric immunoglobulin receptor (pIgR) both in mice and piglet. We examined the mechanism of how PM-sEVs increased the expression level of pIgR in vitro by using a porcine small intestine epithelial cell line (IPEC-J2). Through bioinformatics analysis, dual-luciferase reporter assays, and overexpression or knockdown of the corresponding non-coding RNAs, we identified circ-XPO4 in PM-sEVs as a crucial circRNA, which leads to the expression of pIgR via the suppression of miR-221-5p in intestinal cells. Importantly, we also observed that oral administration of PM-sEVs increased the level of circ-XPO4 and decreased the level of miR-221-5p in small intestine of piglets, indicating that circRNAs in milk-derived sEVs act as sponge for miRNAs in recipients. This study, for the first time, reveals that PM-sEVs have a capacity to stimulate intestinal SIgA production by delivering circRNAs to receptors and sponging the recipient’s original miRNAs, and also provides valuable data for insight into the role and mechanism of animal milk sEVs in intestinal immunity.


2019 ◽  
Author(s):  
Benedikt Kirchner ◽  
Dominik Buschmann ◽  
Vijay Paul ◽  
Michael W. Pfaffl

Abstract Background Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. Results To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Conclusions Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.


2021 ◽  
Author(s):  
Ula Štok ◽  
Saša Čučnik ◽  
Snežna Sodin-Šemrl ◽  
Polona Žigon

Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombosis, obstetric complications and the presence of antiphospholipid antibodies (aPL) that cause endothelial injury and thrombophilia. Extracellular vesicles are involved in endothelial and thrombotic pathologies and may therefore have an influence on the prothrombotic status of APS patients. Intercellular communication and connectivity are important mechanisms of interaction between healthy and pathologically altered cells. Despite well-characterized in vitro and in vivo models of APS pathology, the field of extracellular vesicles is still largely unexplored and could therefore provide an insight into the APS mechanism and possibly serve as a biomarker to identify patients at increased risk. The analysis of EVs poses a challenge due to the lack of standardized technology for their isolation and characterization. Recent findings in the field of EVs offer promising aspects that may explain their role in the pathogenesis of various diseases, including APS.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Wendy Fitzgerald ◽  
Michael L. Freeman ◽  
Michael M. Lederman ◽  
Elena Vasilieva ◽  
Roberto Romero ◽  
...  

Abstract Cytokines are soluble factors that mediate cell–cell communications in multicellular organisms. Recently, another system of cell–cell communication was discovered, which is mediated by extracellular vesicles (EVs). Here, we demonstrate that these two systems are not strictly separated, as many cytokines in vitro, ex vivo, and in vivo are released in EV-encapsulated forms and are capable of eliciting biological effects upon contact with sensitive cells. Association with EVs is not necessarily a property of a particular cytokine but rather of a biological system and can be changed upon system activation. EV-encapsulated cytokines were not detected by standard cytokine assays. Deciphering the regulatory mechanisms of EV-encapsulation will lead to a better understanding of cell–cell communications in health and disease.


2019 ◽  
Vol 20 (10) ◽  
pp. 2381 ◽  
Author(s):  
Marta Tapparo ◽  
Stefania Bruno ◽  
Federica Collino ◽  
Gabriele Togliatto ◽  
Maria Chiara Deregibus ◽  
...  

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 106) to obtain the renal regenerative effect.


2020 ◽  
Vol 21 (8) ◽  
pp. 2954 ◽  
Author(s):  
Henrik Holbech ◽  
Peter Matthiessen ◽  
Martin Hansen ◽  
Gerrit Schüürmann ◽  
Dries Knapen ◽  
...  

ERGO (EndocRine Guideline Optimization) is the acronym of a European Union-funded research and innovation action, that aims to break down the wall between mammalian and non-mammalian vertebrate regulatory testing of endocrine disruptors (EDs), by identifying, developing and aligning thyroid-related biomarkers and endpoints (B/E) for the linkage of effects between vertebrate classes. To achieve this, an adverse outcome pathway (AOP) network covering various modes of thyroid hormone disruption (THD) in multiple vertebrate classes will be developed. The AOP development will be based on existing and new data from in vitro and in vivo experiments with fish, amphibians and mammals, using a battery of different THDs. This will provide the scientifically plausible and evidence-based foundation for the selection of B/E and assays in lower vertebrates, predictive of human health outcomes. These assays will be prioritized for validation at OECD (Organization for Economic Cooperation and Development) level. ERGO will re-think ED testing strategies from in silico methods to in vivo testing and develop, optimize and validate existing in vivo and early life-stage OECD guidelines, as well as new in vitro protocols for THD. This strategy will reduce requirements for animal testing by preventing duplication of testing in mammals and non-mammalian vertebrates and increase the screening capacity to enable more chemicals to be tested for ED properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanan Tang ◽  
Jiayan Li ◽  
Weiyi Wang ◽  
Bingyi Chen ◽  
Jinxing Chen ◽  
...  

Abstract Background Adipose-derived mesenchymal stem cells (ADSC)-based therapy is an outstanding treatment strategy for ischaemic disease. However, the therapeutic efficacy of this strategy is not ideal due to the poor paracrine function and low survival rate of ADSCs in target regions. Platelet extracellular vesicles (PEVs) are nanoparticles derived from activated platelets that can participate in communication between cells. Accumulating evidence indicates that PEVs can regulate the biological functions of several cell lines. In the present study, we aimed to investigate whether PEVs can modulate the proangiogenic potential of ADSCs in vitro and in vivo. Methods PEVs were identified using scanning electron microscope (SEM), flow cytometry (FCM) and nanoparticle tracking analysis (NTA). The CCK8 assay was performed to detect proliferation of cells. Transwell and wound healing assays were performed to verify migration capacity of cells. AnnexinV-FITC/PI apoptosis kit and live/dead assay were performed to assess ADSCs apoptosis under Cocl2-induced hypoxia condition. The underlying mechanisms by which PEVs affected ADSCs were explored using real time-PCR(RT-PCR) and Western blot. In addition, matrigel plug assays were conducted and mouse hindlimb ischaemic models were established to investigate the proangiogenic potential of PEV-treated ADSCs in vivo. Results We demonstrated that ADSC could internalize PEVs, which lead to a series of biological reactions. In vitro, dose-dependent effects of PEVs on ADSC proliferation, migration and antiapoptotic capacity were observed. Western blotting results suggested that multiple proteins such as ERK, AKT, FAK, Src and PLCγ1 kinase may contribute to these changes. Furthermore, PEVs induced upregulation of several growth factors expression in ADSCs and amplified the proliferation, migration and tube formation of HUVECs induced by ADSC conditioned medium (CM). In in vivo experiments, compared with control ADSCs, the injection of PEV-treated ADSCs resulted in more vascularization in matrigel plugs, attenuated tissue degeneration and increased blood flow and capillary density in ischaemic hindlimb tissues. Conclusion Our data demonstrated that PEVs could enhance the proangiogenic potential of ADSCs in mouse hindlimb ischaemia. The major mechanisms of this effect included the promotion of ADSC proliferation, migration, anti-apoptosis ability and paracrine secretion.


2020 ◽  
Vol 34 (19) ◽  
Author(s):  
Dayamin Martinez‐Brito ◽  
Michele Iannone ◽  
Maria Antonietta Tatangelo ◽  
Francesco Molaioni ◽  
Xavier Torre ◽  
...  

1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S285-S309 ◽  
Author(s):  
Kurt Ahrén ◽  
Per Olof Janson ◽  
Gunnar Selstam

ABSTRACT This paper discusses in vivo and in vitro ovarian perfusion systems described so far in the literature. The interest is not focussed primarily on the results of these studies but rather on the advantages and disadvantages of the techniques and methods used. Another part of the paper summarizes the points which are most important, in our opinion, to take into consideration when developing an in vitro perfusion technique of the ovary. The last part of the paper gives a description of and some preliminary results from an in vitro perfusion system of the rabbit ovary which is under development in this laboratory.


Sign in / Sign up

Export Citation Format

Share Document