Assessment of antimutagenic action of Celtis glabrata Steven ex Planch. (Cannabaceae) extracts against base pair exchange and frame shift mutations on Salmonella typhimurium TA98 and TA100 strains by Ames test

2016 ◽  
Vol 39 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Duygu Akin ◽  
Yusuf Durak ◽  
Ahmet Uysal ◽  
Erdogan Gunes ◽  
Mustafa Onur Aladag
Mutagenesis ◽  
2021 ◽  
Author(s):  
Yuki Otsubo ◽  
Shoji Matsumura ◽  
Naohiro Ikeda ◽  
Osamu Morita

Abstract A precise understanding of differences in genomic mutations according to the mutagenic mechanisms detected in mutagenicity data is required to evaluate the carcinogenicity of environmental mutagens. Recently, we developed a highly accurate genome sequencing method, ‘Hawk-Seq™’, that enables the detection of mutagen-induced genome-wide mutations. However, its applicability to detect various mutagens and identify differences in mutational profiles is not well understood. Thus, we evaluated DNA samples from Salmonella typhimurium TA100 exposed to 11 mutagens including alkylating agents, aldehydes, an aromatic nitro compound, epoxides, aromatic amines, and polycyclic aromatic hydrocarbons (PAHs). We extensively analysed mutagen-induced mutational profiles and their association with the mechanisms of mutagens. Hawk-Seq™ sensitively detected mutations induced by all 11 mutagens, including one that increased the number of revertants by approximately two-fold in the Ames test. Although the sensitivity for less water-soluble mutagens was relatively low, we increased the sensitivity to obtain high-resolution spectra by modifying the exposure protocol. Moreover, two epoxides indicated similar 6-dimensional or 96-dimensional mutational patterns; likewise, three SN1 type alkylating agents indicated similar mutational patterns, suggesting that the mutational patterns are compound category-specific. Meanwhile, an SN2 type alkylating agent exhibited unique mutational patterns compared to those of the SN1 type alkylating agents. Although the mutational patterns induced by aldehydes, the aromatic nitro compound, aromatic amines, and PAHs did not differ substantially from each other, the maximum total base substitution frequencies (MTSFs) were similar among mutagens in the same structural groups. Furthermore, the MTSF was found to be associated with the carcinogenic potency of some direct-acting mutagens. These results indicate that our method can generate high-resolution mutational profiles to identify characteristic features of each mutagen. The detailed mutational data obtained by Hawk-Seq™ can provide useful information regarding mutagenic mechanisms and help identify its association with the carcinogenicity of mutagens without requiring carcinogenicity data.


2018 ◽  
Vol 295 ◽  
pp. S151
Author(s):  
A.T.C. Paulino ◽  
S. Mateus ◽  
I. Sardo ◽  
C. Pires

2019 ◽  
Vol 4 (2) ◽  
pp. 68-77
Author(s):  
Anifowoshe T Abass ◽  
Oladipo S Olayinka ◽  
Adebayo O Mutolib ◽  
Eboh O Solomon ◽  
Abdussalam A Rasheedat ◽  
...  

AbstractAsa river is a major river designated to supply millions of people of Ilorin, Kwara State, Nigeria potable water for drinking but its managements is of grave concern due to anthropogenic activities. Thus, evaluation of genotoxicity of this river was carried out by subjecting the water samples and fish therein to three bioassays (Micronucleus (MN) assay, Ames test and SOS-chromo test). Physicochemical parameters and heavy metals were analysed at three different stations (Aliara (SI), Unity (SII) and Tuyil (SIII)) of the river. In SII, most of the heavy metals analysed were above the acceptable limits compare to SI and SIII. The peripheral erythrocyte of the fishes (Oreochromis niloticus, Synodontis batensoda, Synodontis eupterus, Clarias gariepinus and Clarias angullaris) at SI and SII stations showed a significant (p<0.05) induction of MN and different nuclear abnormalities (NA). Water samples from the three stations subjected to Ames test (Salmonella typhimurium TA100) and SOS chromotests (Escherichia coli PQ37) at 25%, 50% and 100% concentrations showed statistically significant (p<0.05) induction of DNA damage at all concentrations in the two tester strains, thus indicating base-pair substitution mutation and excision-repairdeficient, respectively, by the water samples. Therefore, drinking of this water and/or consumption of fish from this river should be taken with caution to avoid a carcinogenic risk.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1553
Author(s):  
Ming-Wei Chao ◽  
Chia-Yi Tseng ◽  
Pei-Ying Lin ◽  
Yu-Jung Chang ◽  
Özge Köse ◽  
...  

Exposure to 3,5-dimethylaminophenol (3,5-DMAP), the metabolite of the 3-5-dimethylaniline, was shown to cause high levels of oxidative stress in different cells. However, we have shown that this alkylaniline metabolite was non-mutagenic to different strains of Salmonella typhimurium in Ames test and also was found to be not mutagenic to CHO cells in HPRT test. Concerning all the available data, we aimed to observe whether this metabolite may have anti-carcinogenic potential in human non-small cell lung cancer line (A549 cells). 3,5-DMAP caused a dose-dependent increase in cytotoxicity and generation of superoxide (O2-.) and reactive oxygen species (ROS). 3,5-DMAP did not produce significant cytotoxicity to human lung fibroblasts even at very high concentrations; however showed higher cytotoxic effect on A549 lung cancer cells at the same concentrations. 3,5-DMAP also led to molecular events, like increases in apoptotic markers (i.e., p53, Bad, Bax and cytochrome and decreases anti-apoptotic proteins (Bcl-2). Furthermore, 3,5-DMAP provided significant decreases in cell viability of A549 cells and eventually inhibited growth of A549 cells in an in vivo mouse model. Tumor sections showed that 3,5-DMAP down-regulated c-Myc expression but up-regulated p53 and cytochrome c, all of which might result in tumor growth arrest. In conclusion, our findings demonstrate 3,5-DMAP is not mutagenic to Salmonella typhimurium and CHO cells; toxic to A549 cells and therefore may have anti-cancer properties, the importance of which should be elucidated with further mechanistic studies.


10.17158/232 ◽  
2012 ◽  
Vol 18 (1) ◽  
Author(s):  
Judee N. Nogodula ◽  
Jessa Marie D. Draug ◽  
Maryjane S. Jamero

Taro (Colocasia esculenta) plant is commonly available and popularly used as food and alternative medicine. To prove its medicinal value, the study explored its secondary metabolites from aqueous-ethanolic leaf extract. Specifically, this investigation aimed to classify its acute dermal toxicity and antibacterial activity, determine its Minimum Inhibitory Concentration (MIC), and identify the equipotency with the standard drug and mutagenic activity. Phytochemical screening of tannins, alkaloids, saponins, cardenolides and bufadienolides, flavonoids, polyphenol compounds and anthraquinones was performed. Five healthy female rabbits were used for toxicity test based on OECD guidelines 404. Kirby-Bauer method was employed for antibacterial activity (susceptibility and potency tests) using Methicillin-Resistant Staphylococcus aureus ATCC 43300, Clinical Isolate Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. A two-fold agar dilution was applied for Minimum Inhibitory Concentration and Ames test was employed for direct mutagenicity assay using Salmonella typhimurium TA98. Results showed that leaf extract has no anthraquinone and it is categorized as non toxic up to allowable dose of 5000 mg/kg. The findings showed a significant difference on the mean zones of inhibition between Vancomycin and plant extract against S. aureus and between tetracycline and the extract towards E.coli. The MRSA and P. aeruginosa showed no significant differences. The MIC of extract is effective to MRSA and S. aureus at 105.26 and 50 mg/mL respectively. However, E. coli and P. aeruginosa are resistant up to the 105.26 mg/mL. Potency test revealed a non-comparability in strength between the extract and Azithromycin using Gram-negative bacteria. However, the extract showed comparable strength with the standard drug using MRSA and S. aureus. Ames test revealed a mutagenic activity using Salmonella typhimurium TA98.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Sandra Angelica De Pascali ◽  
Federica Lugoli ◽  
Antonella De Donno ◽  
Francesco Paolo Fanizzi

New platinum(II) complexes [PtCl(O,O′-acac)(L)] (1) and [Pt(O,O′-acac)(-acac)(L)] (2) (, a; DMS, b) containing a single chelated (O,O′-acac) (1), or one chelated and one -bonded (-acac) acetylacetonate (2) have been synthesized. The new Pt(II) complexes exhibited high in vitro cytotoxicity on cisplatin sensitive and resistant cell lines and showed negligible reactivity with nucleobases (Guo and 5′-GMP) but selective substitution of DMSO/DMS with soft biological nucleophiles, such as L-methionine. In order to assess the ability of the new complexes with respect to cisplatin to induce apoptosis by interaction with nongenomic targets, the Ames' test, a standard reverse mutation assay, was carried out on two Salmonella typhimurium strains (TA98 and TA100). Interestingly, the new complexes did not show the well-known mutagenic activity exhibited by cisplatin and are, therefore, able to activate apoptotic pathways without interacting with DNA.


Sign in / Sign up

Export Citation Format

Share Document