Non-invasive temperature measurement by using phase changes in electromagnetic waves in a cavity resonator

2011 ◽  
Vol 27 (7) ◽  
pp. 726-736 ◽  
Author(s):  
Yasutoshi Ishihara ◽  
Hiroshi Ohwada
Metrologiya ◽  
2020 ◽  
pp. 25-42
Author(s):  
Dmitrii V. Khablov

This paper describes a promising method for non-contact vibration diagnostics based on the use of Doppler microwave sensors. In this case, active irradiation of the object with electromagnetic waves and the allocation of phase changes using two-channel quadrature processing of the received reflected signal are used. The modes of further fine analysis of the resulting signal using spectral or wavelet transformations depending on the nature of the active vibration are considered. The advantages of this non-contact and remote vibration analysis method for the study of complex dynamic objects are described. The convenience of the method for machine learning and use in intelligent systems of non-destructive continuous monitoring of the state of these objects by vibration is noted.


2020 ◽  
Vol 87 (9) ◽  
pp. 553-563
Author(s):  
Jörg Gebhardt ◽  
Guruprasad Sosale ◽  
Subhashish Dasgupta

AbstractAccurate and responsive non-invasive temperature measurements are enablers for process monitoring and plant optimization use cases in the context of Industry 4.0. If their performance is proven for large classes of applications, such measurement principles can replace traditional invasive measurements. In this paper we describe a two-step model to estimate the process temperature from a pipe surface temperature measurement. This static case model is compared to and enhanced by computational fluid dynamic (CFD) calculations to predict transient situations. The predictions of the approach are validated by means of controlled experiments in a laboratory environment. The experimental results demonstrate the efficacy of the model, the responsiveness of the pipe surface temperature, and that state of the art industrial non-invasive sensors can achieve the performance of invasive thermowells. The non-invasive sensors are then used to demonstrate the performance of the model in industrial applications for cooling fluids and steam.


2012 ◽  
Vol 38 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Susan Barnason ◽  
Jennifer Williams ◽  
Jean Proehl ◽  
Carla Brim ◽  
Melanie Crowley ◽  
...  

The cavity resonator used in this investigation is a silver-plated steel cylinder 6.5 cm. in diameter and of adjustable length. Resonance in the H 011 mode is established at a frequency in the region of 9000 Mc./sec., and the length is then varied to give successive resonances at half wave-length intervals. The wave-length is thus determined and this, together with the frequency, the diameter and a correction term involving the sharpness of resonance, enables the velocity to be calculated. This procedure has some advantage over that used previously by Essen & Gordon-Smith in which the measurements were made with a resonator of fixed dimensions. The wave-length is determined only from differences in length, the first resonant length not being used, and in this way certain end-effects, such as those due to the coupling loops and to surface imperfections, are eliminated or greatly reduced. Moreover, by using different frequencies, or different modes at the same frequency, the diameter can be eliminated from the calculations and a value of c thus obtained in terms of frequency and length both of which can be measured with high precision. The result obtained is 299,792.5 ± 3 km./sec., and is thus in close agreement with that obtained by Essen & Gordon-Smith with a fixed cavity and also with the value of c determined recently by Bergstrand with an optical method.


Sign in / Sign up

Export Citation Format

Share Document