Preparation and in Vitro Dissolution Profiles of Tolazamide-Polyethylene Glycol Solid Dispersions

1995 ◽  
Vol 21 (11) ◽  
pp. 1347-1352 ◽  
Author(s):  
G. V. Betageri ◽  
S. R. Dipali
Author(s):  
Md. Shahidul Islam ◽  
Rasheda Akter Lucky

The poor aqueous solubility of the drug exhibits in variable dissolution rate and hence poor bioavailability. Aceclofenac is poorly water soluble drug. The aim of the present study was to improve the water solubility and the dissolution rate of Aceclofenac by solid dispersion technique using different water soluble polymers. The term solid dispersions refer to the dispersions of one or more active ingredients in an inert carrier or matrix at solid state. In this study, binary solid dispersion of Aceclofenac were prepared by fusion method using Polyethylene glycol 6000 (PEG 6000), Polyethylene glycol 4000 (PEG 4000), Poloxamer as carrier. Different drug-carrier weight ratio was used for this study. The effect of the carrier on the solubility and in-vitro dissolution were studied. It was found the drug was released 26.86% after 5 minutes and only 40.19% within 60 mins from active Aceclofenac on the other hand the release pattern of Aceclofenac from the binary SD formulation containing PEG 6000 in 1:5 ratio (Formulation coding: A5) showed the best result in comparison of other binary and ternary SD formulations which was 62.29% after 5 min and 83.03% within 60 mins. The hydrophilic polymers used for the preparation of solid dispersion are showed significant increase in the solubility of Aceclofenac.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


2016 ◽  
Vol 42 (11) ◽  
pp. 1813-1824 ◽  
Author(s):  
Jessica Mendes Nadal ◽  
Mona Lisa Simionatto Gomes ◽  
Débora Maria Borsato ◽  
Martinha Antunes Almeida ◽  
Fernanda Malaquias Barboza ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


2011 ◽  
Vol 47 (3) ◽  
pp. 513-523 ◽  
Author(s):  
Jagdale Swati Changdeo ◽  
Musale Vinod ◽  
Kuchekar Bhanudas Shankar ◽  
Chabukswar Anuruddha Rajaram

Allopurinol is a commonly used drug in the treatment of chronic gout or hyperuricaemia associated with treatment of diuretic conditions. One of the major problems with the drug is that it is practically insoluble in water, which results in poor bioavailability after oral administration. In the present study, solid dispersions of allopurinol were prepared by solvent evaporation, kneading method, co-precipitation method, co-grinding method and closed melting methods to increase its water solubility. Hydrophilic carriers such as polyvinylpyrrolidone, polyethylene glycol 6000 were used in the ratio of 1:1, 1:2 and 1:4 (drug to carrier ratio). The aqueous solubility of allopurinol was favored by the presence of both polymers. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, powder X-ray diffraction, UV and Fourier Transform Infrared spectroscopy. Solid state characterizations indicated that allopurinol was present as an amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure allopurinol, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. Solid dispersion prepared with polyvinylpyrrolidone showed highest improvement in wettability and dissolution rate of allopurinol. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Non-Fickian diffusion. Therefore, the present study showed that polyvinylpyrrolidone and polyethylene glycol 6000 have a significant solubilizing effect on allopurinol.


2020 ◽  
Vol 9 (4) ◽  
pp. 79-87
Author(s):  
D. V. Demchenko ◽  
E. A. Jain (Korsakova) ◽  
V. Yu. Balabanyan ◽  
M. N. Makarova ◽  
V. G. Makarov

Introduction. 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil is a substance of scientific interest intended for the treatment of HIV-infection. However, its low bioavailability is a major limitation in successful drug delivery by oral route. Therefore, the objective of the present work was to enhance itssolubility by using solid dispersion technique followed by the development of a solid dosage form.Aim. Development of the composition and technology of tablets based on 1- [2-(2-benzoylphenoxy)ethyl]-6-methyluracil with the appropriate technological properties providing the most complete release of the active pharmaceutical ingredient (API) in vitro.Materials and methods. The pharmaceutical substance 1-[2-(2-benzoylphenoxy) ethyl]-6-methyluracil is a crystalline powder with poor solubility. Solid dispersions were prepared using Lactose, Kollidon® 17PF, Kollidon® 30, Kollidon® VA64, Kollidon 90F, and PEG-6000 as a carrier mostly in 1:4 ratio by two methods – co-melting and solvent evaporation. The technological properties of substance, tablet masses and tablet quality were determined according to the methods described in the State Pharmacopoeia of the Russian Federation (14th edition).Results and discussion. Article shows the results of development of the composition and technology of a medicine in the form of tablets based on the substance 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil. Solid dispersion technique was used to improve the biopharmaceutical properties of 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil.Conclusion. In vitro dissolution studies showed enhanced dissolution rate of the drug-loaded solid dispersion with Kollidon 17PF as a carrier as compared to pure drug.


Author(s):  
Rahul Radke ◽  
Neetesh K. Jain

Aim: Ambrisentan is a endothelin type A selective receptor antagonist used in the management of pulmonary arterial hypertension. Ambrisentan is BCS Class II drug haves very poor solubility in water and shows incomplete absorption after oral administration. The present work was aimed to study the effect of amphiphilic graft co-polymer carrier on enhancement of solubility and dissolution rate of poorly water soluble drug ambrisentan. To improve the aqueous solubility of ambrisentan solid dispersion was formulated by using novel carrier amphiphilic graft co-polymer (Soluplus® ). Materials and Methods: Solid dispersion was prepared by kneading technique by utilizing various ratios of carrier. Obtained solid dispersions ware evaluated for solubility, percentage yield, drug content and in vitro dissolution study. Powder characterization was performed by infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Results: FTIR spectroscopy shows no interaction between drug and polymer. DSC study showed that endothermic peak of drug was completely disappeared in Solid dispersion suggesting complete miscibility of drug in Soluplus®. XRD study suggest the conversion of crystalline ambrisentan in to amorphous form. All solid dispersions prepared with Soluplus® as a carrier showed increase in solubility. Solubility of ambrisentan was found to be increased 7.17 fold in optimized SD formulation ASD5. In vitro dissolution study showed the faster drug release from SD formulation compare to its pure form. All solid dispersion formulation’s release more than 50% of drug in first 10 min. Conclusion: This study conclude that the preparation of amphiphilic graft co-polymer based solid dispersion prepared by kneading technique is found to be useful in enhancement the solubility and dissolution rate of ambrisentan.


Sign in / Sign up

Export Citation Format

Share Document