scholarly journals Fibroblast Circadian Rhythms of PER2 Expression Depend on Membrane Potential and Intracellular Calcium

2012 ◽  
Vol 29 (6) ◽  
pp. 653-664 ◽  
Author(s):  
Takako Noguchi ◽  
Connie W. Wang ◽  
Haiyun Pan ◽  
David K. Welsh
2002 ◽  
Vol 282 (5) ◽  
pp. C1000-C1008 ◽  
Author(s):  
Kara L. Kopper ◽  
Joseph S. Adorante

In fura 2-loaded N1E-115 cells, regulation of intracellular Ca2+ concentration ([Ca2+]i) following a Ca2+ load induced by 1 μM thapsigargin and 10 μM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na+ dependent and inhibited by 5 mM Ni2+. In cells with normal intracellular Na+ concentration ([Na+]i), removal of bath Na+, which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unless cell Ca2+ buffer capacity was reduced. When N1E-115 cells were Na+ loaded using 100 μM veratridine and 4 μg/ml scorpion venom, the rate of the reverse mode of the Na+/Ca2+ exchanger was apparently enhanced, since an ∼4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loaded cells, we were able to demonstrate forward operation of the Na+/Ca2+ exchanger (net efflux of Ca2+) by observing increases (∼ 6 mM) in [Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could only be observed when a continuous ionomycin-induced influx of Ca2+ occurred. The voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used to measure changes in membrane potential. Ionomycin (1 μM) depolarized N1E-115 cells (∼25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250–500 μM benzamil. These data provide evidence for the presence of an electrogenic Na+/Ca2+ exchanger that is capable of regulating [Ca2+]i after release of Ca2+ from cell stores.


2008 ◽  
Vol 121 (22) ◽  
pp. 2272-2277 ◽  
Author(s):  
Yan-feng LI ◽  
Ye-hong ZHUO ◽  
Wei-na BI ◽  
Yu-jing BAI ◽  
Yan-na LI ◽  
...  

1993 ◽  
Vol 265 (6) ◽  
pp. C1501-C1510 ◽  
Author(s):  
B. Nilius ◽  
G. Schwarz ◽  
G. Droogmans

The modulation of intracellular calcium ([Ca2+]i) by the membrane potential was investigated in human melanoma cells by combining the nystatin-perforated patch-clamp technique with Ca2+ measurements. Voltage steps to -100 mV induced a rise in [Ca2+]i and a creeping inward current. These effects were absent in Ca(2+)-free solution and could be blocked by Ni2+ or La3+. Voltage ramps revealed a close correlation between [Ca2+]i and voltage, with the strongest voltage dependence around the resting potential. Long-lasting tail currents, closely correlated with the rise in [Ca2+]i and a reversal potential close to the K+ equilibrium potential, occurred if the membrane potential was clamped back to 0 mV. They were absent if intracellular K+ was replaced by Cs+ and blocked by extracellular tetraethylammonium (5 mM), Ba2+ (1 mM), or a membrane-permeable adenosine 3',5'-cyclic monophosphate analogue. These observations are discussed in relation to cell proliferation. The enhanced expression of K+ channels during cell proliferation provides a positive-feedback mechanism resulting in long-term changes in [Ca2+]i required for the G1-S transition in the cell cycle.


1979 ◽  
Vol 81 (1) ◽  
pp. 49-61
Author(s):  
P. G. Nelson ◽  
M. P. Henkart

A number of mesenchymal cells (fibroblasts, macrophages and megakaryocytes) respond to a variety of stimuli with large hyperpolarizations lasting several seconds (the H.A. response). The H.A. responses can occur as repetitive trains or oscillations. These hyperpolarizations are due to an increase of the surface membrane permeability to potassium ions which is probably mediated by an increase in the cytoplasmic free calcium ion concentration. Evidence is discussed which suggests that the source of this increased calcium, is least in part, an intracellular sequestering system, probably the endoplasmic reticulum. A model capable of producing oscillatory changes in membrane potential is proposed based on such an intracellular calcium sequestering and releasing system.


Sign in / Sign up

Export Citation Format

Share Document