Improved Brain Delivery of a Nonsteroidal Anti-Inflammatory Drug with a Synthetic Glyceride Ester: a Preliminary Attempt at a CNS Drug Delivery System for the Therapy of Alzheimer's Disease

2000 ◽  
Vol 8 (6) ◽  
pp. 371-381 ◽  
Author(s):  
Yoshiharu Deguchi ◽  
Hideki Hayashi ◽  
Shinobu Fujii ◽  
Takafumi Naito ◽  
Yoshinari Yokoyama ◽  
...  
2017 ◽  
Vol 5 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Eva Beňová ◽  
Vladimír Zeleňák ◽  
Dáša Halamová ◽  
Miroslav Almáši ◽  
Veronika Petrul'ová ◽  
...  

Mesoporous silica modified by p-coumaric acid derivatives as photo-switchable ligands was studied for the delivery of a non-steroidal anti-inflammatory drug.


Author(s):  
Jayanti Mishra ◽  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem Hyder Pottoo ◽  
Faizana Fayaz ◽  
...  

Background: Alzheimer’s disease is an irreversible, progressive brain disorder manifested with symptoms like loss of memory (known as dementia), personality changes, loss of cognition, impaired movement, confusion, deteriorated planning and thought process. Neurodegeneration in Alzheimer’s disease is the result of deposition of protein beta-amyloid that forms plaques and another protein called tau, forming tangles that prevent proper functioning of nerve cells in the brain. Methods: The goal of the review was to comprehensively study the utilization of nanotechnology and the role that carbon nanotubes can play as a drug delivery system for amelioration of Alzheimer’s disease. Results: Nanotechnology is one of the most researched domains of modern science. It contributes significantly to therapeutics by facilitating drug therapy to reach the target sites, which are otherwise difficult to reach with conventional drug delivery systems. Carbon nanotubes are the allotropes of carbon in which several carbon atoms bind with each other to form a cylindrical or a tube-like structure. The carbon nanotubes possess several unique qualities, which confers them with a high potential of being utilized as an efficient drug delivery system. They offer high drug loading, can readily cross the toughest biological barriers like BBB. Carbon nanotubes also facilitate the passage of drugs to the brain via the olfactory route, which further helps in restoring normal autophagy, thus preventing the elimination of autophagic chemicals. They can carry a vast range of cargos, including drugs, antigens, genetic materials, and biological macromolecules. Conclusion: Carbon nanotubes are highly promising drug delivery system for anti-Alzheimer’s drugs. They have potential of overcoming the various biological barriers like BBB. However, more extensive research is required so as to set up a firm base for development of advanced commercial products based on carbon nanotubes for treatment of Alzheimer’s disease.


2020 ◽  
Vol 26 (12) ◽  
pp. 1331-1344
Author(s):  
Shiv Bahadur ◽  
Nidhi Sachan ◽  
Ranjit K. Harwansh ◽  
Rohitas Deshmukh

Alzheimer's disease (AD) is a neurodegenerative brain problem and responsible for causing dementia in aged people. AD has become most common neurological disease in the elderly population worldwide and its treatment remains still challengeable. Therefore, there is a need of an efficient drug delivery system which can deliver the drug to the target site. Nasal drug delivery has been used since prehistoric times for the treatment of neurological disorders like Alzheimer's disease (AD). For delivering drug to the brain, blood brain barrier (BBB) is a major rate limiting factor for the drugs. The desired drug concentration could not be achieved through the conventional drug delivery system. Thus, nanocarrier based drug delivery systems are promising for delivering drug to brain. Nasal route is a most convenient for targeting drug to the brain. Several factors and mechanisms need to be considered for an effective delivery of drug to the brain particularly AD. Various nanoparticlized systems such as nanoparticles, liposomes, exosomes, phytosomes, nanoemulsion, nanosphere, etc. have been recognized as an effective drug delivery system for the management of AD. These nanocarriers have been proven with improved permeability as well as bioavailability of the anti-Alzheimer’s drugs. Some novel drug delivery systems of anti-Alzheimer drugs are under investigation of different phase of clinical trials. Present article highlights on the nanotechnology based intranasal drug delivery system for the treatment of Alzheimer’s disease. Furthermore, consequences of AD, transportation mechanism, clinical updates and recent patents on nose to brain delivery for AD have been discussed.


Sign in / Sign up

Export Citation Format

Share Document