The vegetation of the class Scheuchzerio–Caricetea fuscae Tx. 1937 in the Yanganape mountain massif area (Eastern macroslope of the Polar Urals)

2021 ◽  
pp. 113-149
Author(s):  
E. D. Lapshina ◽  
I. V. Filippov ◽  
V. E. Fedosov ◽  
Yu. V. Skuchas ◽  
P. Lamkowski ◽  
...  

There are very few publications on the classification of mountain mire vegetation in Russia. Several associations in the Southern Siberia mountains (Lapshina, 1996; Lashchinsky, 2009) and the Khibiny Mountains (Koroleva, 2001) are described. Mire vegetation in the Southern Urals is relatively well studied and described in the traditions of the ecological-phytocenotic dominant classification (Ivchenko, 2013; Ivchenko, Znamenskiy, 2015) while the knowledge on that of the Northern and Sub-Polar Urals is extremely limited. There is no information about the mires in the Polar Urals. The paper presents the results of classification of the class Scheuchzerio–Caricetea fuscae of the Yanganape mountain massif (67.68°—67.75° N, 67.72°—68.00° E) and adjacent plains in the Eastern macroslope of the Polar Urals, within the southern tundra subzone. The study area is mountain massif of about 250 m a. s. l., composed of limestone outcrops, with a wavy flat (60–90 m a. s. l.) plain around (Fig. 1–2). The classification is based on 138 relevés made in July 27–August 8, 2017 (Fig. 3). Relevés of similar syntaxa, established in the north of the Western Europe and the East European tundras (Ruuhijärvi, 1960; Dierssen, 1982; Lavrinenko et al., 2016), were included in analysis. DCA and t-SNE (t-distributed stochastic neighbor embedding) methods were used for ordination of syntaxa in multidimensional space (Maaten, Hinton, 2008). The calculations were made using the machine learning package for Python-Scikit-learn. In total, 13 associations, 11 subassociations, 12 variants from 6 alliances and 3 orders of the class Scheuchzerio–Caricetea fuscae were identified on the relatively small (about 70 km2) area. Within the order Caricion davallianae, syntaxa of the alliance Caricion atrofuscae-saxatilis, comprising low sedge-hypnum communities on carbonate mineral and organomineral soils in the mountains of the Western Europe, were identified and described for the first time on the territory of Russia. Three new associations (Ditricho flexicauli—Caricetum redowskianae, Tomentypno nitentis–Equisetetum palustre, Tomentypno nitentis–Eriophoretum vaginati) were described on the the Yanganape mountain massif (Table 1), which significantly expands the area of the alliance to the East. Alliance’ communities have some similarities with syntaxa of zonal dwarf shrub-grass-moss tundra vegetation (Lavrinenko, Lavrinenko, 2018), but are generally well differed by the species composition and community structure (Table 5). The order Caricetalia fuscae in the Eastern macroslope of the Polar Urals is represented by 4 alliances. In addition to Drepanocladion exannulati and Sphagno-Caricion canescentis, listed in the “Classification of Vegetation of Europe” (Mucina et al., 2016), we include into order the alliance Caricion stantis — moderately rich sedge-moss fen vegetation of the Subarctic and tundra zones, and the alliance Stygio–Caricion limosae, containing extremely waterlogged meso-oligotrophic and slightly acidic to neutral low sedge fens. There are 4 associations within the alliance Caricion stantis, including new ass. Scorpidio cossonii–Caricetum rariflorae (Table 2). Taking into account statistically significant differences in the species composition of sedge-moss communities dominated by various moss species (Fig. 15, 5-6), ass. Scorpidio scorpioidis–Caricetum chordorrhizae was taken out from ass. Drepanoclado revolventis–Caricetum chordorrhizae Osvald 1925 ex Dierssen 1982 broadly understood in the Western Europe. Its nomenclature type is the only relevé of Carex chordorrhizae-Amblistegium scorpioides-Ass. (Osvald 1925: 37), which sufficient for the original diagnosis, because it contains list of species with abundance and both name-giving taxa (ICPN, 2b, 7). The communities of both associations were identified in the Eastern macroslope of the Polar Urals, where they are represented by new subassociations, which significantly expands the distribution area of these associations to the East. Recently validly described in the Eastern European tundras (Lavrinenko et al., 1916) ass. Scorpidio revolventis–Caricetum rariflorae is also known for the North of the Western Europe (Dierssen, 1982). Its difference from western syntaxa is the absence of many boreal species, which are not able to exist in the severe climate in the North of Western Siberia, as well as the great number of plant communities with the diagnostic species of the alliance Caricion atrofuscae-saxatilis due to rich mineral nutrition, associated with the carbonate soils and calcium-rich groundwaters in the study area. New associations are established in two allian­ces: Carici aquatilis–Warnstorfietum tundrae in Drepanocladion exannulati and Sphagno squarrosi–Caricetum chordorrhizae in Sphagno–Caricion canescentis (Table 3). The floristic features of the latter alliance, whose communities on the northern limit of their distribution have a certain similarity to the arctic sedge-moss mire vegetation of the alliance Caricion stantis, are discussed. Oligotrophic communities of the alliance Scheuch­zerion palustris, occuring in acidic habitats, are placed in the order Scheuchzerietalia palustris that is in agreement with new interpretation of this alliance in the paper by Mucina et al. (2016). Two associations (Carici rotundatae–Sphagnetum baltici, Sphagno compaci–Caricetum rotundatae) are assigned to this alliance. There are few relevés for both Scheuchzerion palustris and Stygio–Caricion limosae alliances in the study area that is why their classification is preliminary, and it will be considered in the near future for the whole North of the Western Siberia on a larger data set. The classification results are confirmed by DCA-ordination of selected syntaxa (Fig.15, Б). However, the differentiation of communities is more clearly demonstrated by the t-SNE method, which allows displaying multidimensional hyperspaces on the plane (Fig.15, А).

2019 ◽  
Vol 16 ◽  
pp. 00022
Author(s):  
Yuriy Naumenko

Pink-red colored snow fields were sampled in the area of Ochety Lake (the Polar Urals, West Siberia) at the altitude of 272 m above the sea level in August 2019. Zygospores of Chlamydomonas nivalis prevailed in plant communities. Altogether, 9 species of algae have been discovered in snow samples: 7 species of Cyanoprokaryota, 1 species of Bacillariophyta and 1 species of Chlorophyta.


2019 ◽  
Vol 489 (1) ◽  
pp. 53-56
Author(s):  
N. S. Inkina

The article for the first time presents data on the material composition and structure of the Sezym Formation of the Lower Permian of the Western slope of the Polar Urals, which lies with stratigraphic disagreement on shallow medium-Carboniferous limestone and according to the overlapping deep-sea Artinian terrigenous deposits. New data are important for paleogeography and geodynamic reconstruction of the North-East of the European platform in the late Paleozoic.


2021 ◽  
Vol 10 ◽  
pp. 3-15
Author(s):  
D. A. Gruzdev ◽  

The article considers isolated carbonate platforms known in the Sub-Polar Urals (basin of the Bolshaya Nadota River; boreholes of the Yunyakha and Levaya Grubeyu areas) and the NW Pay-Khoy (basin of the Lymbad’yakha River and coast of the Barents Sea). The three stages of formation of the platforms (Frasnian, Famennian-Tournaisian, and Visean-Serpukhovian) are distinguished, and the sedimentological models of these platforms are developed. Subsidence curves based on the back-striping demonstrate some differences in the evolution of the studied isolated carbonate platforms. Similarities and differences in the history and structure of the platforms are observed. Formation of the intra-shelf depressions (the Kozhim Depression in the Sub-Polar Urals, and the Korotaikha Depression in the Pay-Khoy) in the Frasnian — Early Famennian caused appearance of isolated carbonate platforms. The depressions probably were formed by the regional tectonics. The following development of the carbonate platforms was controlled by eustatic fluctuations. The isolated platforms differ by stratigraphic spans (Late Frasnian — Serpukhovian for the Polar Urals Platform and Famennian-Tournaisian for the Pay-Khoy Platform), relief, facies, and size. The isolated depressions differ in size as well: the Kozhim Depression is larger than the Korotaikha Depression. Additionally, it is supposed that the Polar Urals platform was of warm-water type, but the Pay-Khoy platfrom was of cool-water type.


2020 ◽  
Vol 223 ◽  
pp. 03001
Author(s):  
Oleg Sizov ◽  
Leya Brodt ◽  
Andrey Soromotin ◽  
Nikolay Prikhodko ◽  
Ramona Heim

Wildfires are one of the main factors for landscape change in tundra ecosystems. In the absence of external mechanical impacts, tundra plant communities are relatively stable, even in the face of climatic changes. In our study, lichen cover was degraded on burnt tundra sites, which increased the permafrost thaw depth from 100 to 190 cm. In old fire scars (burnt 1980 – 1990) of the forest-tundra, vegetation cover was dominated by trees and shrubs. The soil temperature on burnt forest-tundra sites was higher in comparison to conditions of the unburnt control sites and permafrost was was not found at a depth of 2-2,3m. Dynamics of the Normalized Difference Vegetation index (NDVI) from 1986-2020 reveal that immediately after fires, vegetation recovered and biomass increased due to the development of Betula nana shrubs. In old fire scars of the forest-tundra (burnt 1980-1990), a significant increase in NDVI values was evident, in contrast to the unburnt tundra vegetation where this trend was less pronounced. We conclude that "greening" in the north of Western Siberia may occur due to fire-induced transformation processes. The role of wildfires in the advance of the treeline to the north, driven by climate change and active economic development of the Arctic, will gradually increase in future.


2001 ◽  
pp. 6-16 ◽  
Author(s):  
L. L. Zanokha

The grassland vegetation which occurs in places of animal colonies or around human settlements in the Central-Siberian sector of the Arctic is referred to 2 new associations, namely Saxifrago cernuae—Alopecuretum alpini and Poo arcticae—Calamagrostietum holmii ass. nov., and also to 2 variants (inops and Astragalus umbellatus var. nov) of the previously described associa­tion Saxifrago hirculi—Poetum alpigenae (Zanokha, 1995). The first association is distributed within the whole Taymyr Peninsula and also the part of the polar desert subzone in the Bolshevik Isl. The grass cover is formed by Poa alpigena and Alopecurus alpinus in various combinations of their dominance. The ass. Poo arcticae—Calamagrostietum holmii is distributed only throughout the tundra zone of Taymyr; its grass layer consists of Calamagrostis holmii and Poa arctica. The mentioned variants of ass. Saxifrago hirculi—Poetum alpigenae occur locally in the vicinities of Dixon settlement.


2019 ◽  
Vol 96 (10) ◽  
pp. 941-945 ◽  
Author(s):  
Ivan I. Alekseev ◽  
N. V. Dinkelaker ◽  
A. A. Oripova ◽  
G. A. Semyina ◽  
A. A. Morozov ◽  
...  

Increasing rates of anthropogenic forcing on natural and urban ecosystems in the Arctic requires the development of more detailed environmental monitoring. In this context, studying of contents of background trace elements seems to be actual goal. The goal of this study is an assessment of the content of background heavy metals in natural soils of the Polar Urals (surroundings of mountain Chyornaya), surroundings of Salekhard and foothills of the Polar Urals and urban soils (Kharsaim, Aksarka, Labytnangi, Kharp, Salekhard). Levels of maximum permissible concentrations (MPCs) were established to be exceeded by some elements (As, Ni, Co) in most of soil samples (from both urban and natural environments). It can indicate to high regional background contents for these elements especially in case of natural soils. The highest exceedance of MPCs is typical for soil samples from urban environments. For other studied trace elements (Cu, Zn, Pb, Sr) MPCs are exceeded only in few cases. The highest trace elements content in urban soils is connected with sites with significantly high rates of anthropogenic forcing (chrome-processing factory in Kharp). The highest trace elements content for natural soils can be connected with three soil profile zones: peat-like horizons, stagnic and cryogenic geochemical barriers, and soil horizons with clay texture class. Moreover, we discussed problems of trace elements behavior in conditions of changing climate of the Arctic and permafrost degradation.


Author(s):  
Yurij Kirillovich Vasil'chuk

Massive ice is widespread on the territory of modern of Eurasian permafrost area: in the north of Western Siberia, Taimyr, Chukotka, and Arctic islands. Their thickness reaches 45-50m. The origin of massive ice is difficult to define due to the equifinality of such two different processes as intrasedimental freezing and formation of glacial ice. In both cases, thick massive ice is formed in various ways, but with the same final appearance. Three important aspects that show the evidence of the intrasedimental origin of massive ice in the north of Eurasia are examined. At first glance, they are obvious, but still fell out of sight of paleogeocryologists. It is shown that: 1) Any currently existing Late Pleistocene glacier, or part of it located under Holocene ice, have not yet been found within the Eurasian Arctic or on the Arctic islands with ice sheets, nor in the mountainous regions. 2) The isotopic composition of the vast majority of massive ice found in northern Eurasia is quite "Holocene", whereas in the north of Canada and Alaska, ice with a very light isotopic composition can often be found. 3) It should be taken into account that massive ice is found in the Holocene sediments of Western Siberia and Chukotka, where there is no reason to assume the glaciers spread to the plains.


2018 ◽  
Vol 18 (3) ◽  
pp. 114-122
Author(s):  
OD Kovalev ◽  
NA Zubriy ◽  
BYu Filippov

An important step in research planning is the choice of methodology. This is especially important for territories which are difficult to access such as in the Arctic, where successive repetitions of field works require significant resources. The methodology utilizing the local fauna has been used over the past twenty years. It provides comparable data on the structure of fauna and species richness for different territories. The purpose of the present study was to assess the “local fauna method” with respect to fauna studies of ground beetles in the Arctic forest-tundra zone. The research was conducted from June 18 2017 to August 30 2017 within the Polar Urals (10 km from the Harp settlement in the Yamalo-Nenets Autonomous Okrug, which is a state of Russia). Carabids were sampled by using pitfall traps on 20 sites. This article will also include the results of our previous research concerning the structure of some local faunas from the forest-tundra zone of Nenets Autonomous Okrug (settlements Nes’, Oma, Khorey-Ver). The results of this study demonstrate the following: 1) the local fauna of the Polar Urals has 85 species of ground beetles from 25 genera, which is 77% of species lists of carabids for a 70-year period of research within the Polar Urals; 2) the local fauna of the Polar Urals has 29% similarity of list species with local faunas from the European part of the Arctic, with similar compositions of zoogeographical groups and life forms; 3) in one research period there was 90% detection of carabids species in the forest-tundra local fauna using the sampling method of pitfall traps within a period of 40 days, conducted at 15 sites, with the predominance of southern types of plant communities (meadows, forests).


2021 ◽  
pp. 54-64
Author(s):  
Alexey Yurichev

The study is focused on accessory sulfide mineralization revealed in massive chromitites of Kharcheruz ultramafic massif, which is part of the Khadatinsky ophiolite belt closing ophiolite complexes of the Polar Urals in the north. Three paragenetic associations of accessory sulfides associated with various processes of host chromitites formation and transformation are identified. Typomorphic and chemical features of ore minerals are characterized.


Sign in / Sign up

Export Citation Format

Share Document