scholarly journals Some clear evidences of the intrasedimental origin of massive ice in northern Eurasia

Author(s):  
Yurij Kirillovich Vasil'chuk

Massive ice is widespread on the territory of modern of Eurasian permafrost area: in the north of Western Siberia, Taimyr, Chukotka, and Arctic islands. Their thickness reaches 45-50m. The origin of massive ice is difficult to define due to the equifinality of such two different processes as intrasedimental freezing and formation of glacial ice. In both cases, thick massive ice is formed in various ways, but with the same final appearance. Three important aspects that show the evidence of the intrasedimental origin of massive ice in the north of Eurasia are examined. At first glance, they are obvious, but still fell out of sight of paleogeocryologists. It is shown that: 1) Any currently existing Late Pleistocene glacier, or part of it located under Holocene ice, have not yet been found within the Eurasian Arctic or on the Arctic islands with ice sheets, nor in the mountainous regions. 2) The isotopic composition of the vast majority of massive ice found in northern Eurasia is quite "Holocene", whereas in the north of Canada and Alaska, ice with a very light isotopic composition can often be found. 3) It should be taken into account that massive ice is found in the Holocene sediments of Western Siberia and Chukotka, where there is no reason to assume the glaciers spread to the plains.

Author(s):  
I. D. Zolnikov ◽  
A. A. Anoikin ◽  
E. A. Filatov ◽  
A. V. Vybornov ◽  
A. V. Vasiliev ◽  
...  

This study focuses on the early human occupation of the arctic part of the West Siberian Plain and introduces the finds at the Paleolithic site Kushevat (Shuryshkarsky District, Yamal-Nenets Autonomous Okrug), discovered in 2020. Geological and geomorphological characteristics of the Lower Ob region are provided, the chronology of the key Middle and Late Neopleistocene sequences is assessed, and criteria underlying the search for Paleolithic sites in the area are outlined. We describe the discovery and excavations at Kushevat, its stratigraphy and its faunal remains. On the basis of correlation with neighboring key Late Neopleistocene sections with a representative series of absolute dates, the age of the site is estimated at cal 50–35 ka BP. Results of a traceological study of a possibly human-modified reindeer antler are provided. Findings at Kushevat and the available information on the early peopling of northern Eurasia suggest that the boundary of the inhabited part of that region must be shifted ~200 km to the north. The Ob, therefore, is one of the last major Siberian rivers where traces of the Early Upper Paleolithic culture have been found. The discovery of a stratified site in its lower stretch is a milestone in the Paleolithic studies in the region. A large area over which faunal remains are distributed, and the presence of lithics among the surface finds, suggest that Kushevat is a highly prospective site for future archaeological studies of the early stages in the human peopling of the region.


2021 ◽  
pp. 113-149
Author(s):  
E. D. Lapshina ◽  
I. V. Filippov ◽  
V. E. Fedosov ◽  
Yu. V. Skuchas ◽  
P. Lamkowski ◽  
...  

There are very few publications on the classification of mountain mire vegetation in Russia. Several associations in the Southern Siberia mountains (Lapshina, 1996; Lashchinsky, 2009) and the Khibiny Mountains (Koroleva, 2001) are described. Mire vegetation in the Southern Urals is relatively well studied and described in the traditions of the ecological-phytocenotic dominant classification (Ivchenko, 2013; Ivchenko, Znamenskiy, 2015) while the knowledge on that of the Northern and Sub-Polar Urals is extremely limited. There is no information about the mires in the Polar Urals. The paper presents the results of classification of the class Scheuchzerio–Caricetea fuscae of the Yanganape mountain massif (67.68°—67.75° N, 67.72°—68.00° E) and adjacent plains in the Eastern macroslope of the Polar Urals, within the southern tundra subzone. The study area is mountain massif of about 250 m a. s. l., composed of limestone outcrops, with a wavy flat (60–90 m a. s. l.) plain around (Fig. 1–2). The classification is based on 138 relevés made in July 27–August 8, 2017 (Fig. 3). Relevés of similar syntaxa, established in the north of the Western Europe and the East European tundras (Ruuhijärvi, 1960; Dierssen, 1982; Lavrinenko et al., 2016), were included in analysis. DCA and t-SNE (t-distributed stochastic neighbor embedding) methods were used for ordination of syntaxa in multidimensional space (Maaten, Hinton, 2008). The calculations were made using the machine learning package for Python-Scikit-learn. In total, 13 associations, 11 subassociations, 12 variants from 6 alliances and 3 orders of the class Scheuchzerio–Caricetea fuscae were identified on the relatively small (about 70 km2) area. Within the order Caricion davallianae, syntaxa of the alliance Caricion atrofuscae-saxatilis, comprising low sedge-hypnum communities on carbonate mineral and organomineral soils in the mountains of the Western Europe, were identified and described for the first time on the territory of Russia. Three new associations (Ditricho flexicauli—Caricetum redowskianae, Tomentypno nitentis–Equisetetum palustre, Tomentypno nitentis–Eriophoretum vaginati) were described on the the Yanganape mountain massif (Table 1), which significantly expands the area of the alliance to the East. Alliance’ communities have some similarities with syntaxa of zonal dwarf shrub-grass-moss tundra vegetation (Lavrinenko, Lavrinenko, 2018), but are generally well differed by the species composition and community structure (Table 5). The order Caricetalia fuscae in the Eastern macroslope of the Polar Urals is represented by 4 alliances. In addition to Drepanocladion exannulati and Sphagno-Caricion canescentis, listed in the “Classification of Vegetation of Europe” (Mucina et al., 2016), we include into order the alliance Caricion stantis — moderately rich sedge-moss fen vegetation of the Subarctic and tundra zones, and the alliance Stygio–Caricion limosae, containing extremely waterlogged meso-oligotrophic and slightly acidic to neutral low sedge fens. There are 4 associations within the alliance Caricion stantis, including new ass. Scorpidio cossonii–Caricetum rariflorae (Table 2). Taking into account statistically significant differences in the species composition of sedge-moss communities dominated by various moss species (Fig. 15, 5-6), ass. Scorpidio scorpioidis–Caricetum chordorrhizae was taken out from ass. Drepanoclado revolventis–Caricetum chordorrhizae Osvald 1925 ex Dierssen 1982 broadly understood in the Western Europe. Its nomenclature type is the only relevé of Carex chordorrhizae-Amblistegium scorpioides-Ass. (Osvald 1925: 37), which sufficient for the original diagnosis, because it contains list of species with abundance and both name-giving taxa (ICPN, 2b, 7). The communities of both associations were identified in the Eastern macroslope of the Polar Urals, where they are represented by new subassociations, which significantly expands the distribution area of these associations to the East. Recently validly described in the Eastern European tundras (Lavrinenko et al., 1916) ass. Scorpidio revolventis–Caricetum rariflorae is also known for the North of the Western Europe (Dierssen, 1982). Its difference from western syntaxa is the absence of many boreal species, which are not able to exist in the severe climate in the North of Western Siberia, as well as the great number of plant communities with the diagnostic species of the alliance Caricion atrofuscae-saxatilis due to rich mineral nutrition, associated with the carbonate soils and calcium-rich groundwaters in the study area. New associations are established in two allian­ces: Carici aquatilis–Warnstorfietum tundrae in Drepanocladion exannulati and Sphagno squarrosi–Caricetum chordorrhizae in Sphagno–Caricion canescentis (Table 3). The floristic features of the latter alliance, whose communities on the northern limit of their distribution have a certain similarity to the arctic sedge-moss mire vegetation of the alliance Caricion stantis, are discussed. Oligotrophic communities of the alliance Scheuch­zerion palustris, occuring in acidic habitats, are placed in the order Scheuchzerietalia palustris that is in agreement with new interpretation of this alliance in the paper by Mucina et al. (2016). Two associations (Carici rotundatae–Sphagnetum baltici, Sphagno compaci–Caricetum rotundatae) are assigned to this alliance. There are few relevés for both Scheuchzerion palustris and Stygio–Caricion limosae alliances in the study area that is why their classification is preliminary, and it will be considered in the near future for the whole North of the Western Siberia on a larger data set. The classification results are confirmed by DCA-ordination of selected syntaxa (Fig.15, Б). However, the differentiation of communities is more clearly demonstrated by the t-SNE method, which allows displaying multidimensional hyperspaces on the plane (Fig.15, А).


2020 ◽  
Vol 223 ◽  
pp. 03001
Author(s):  
Oleg Sizov ◽  
Leya Brodt ◽  
Andrey Soromotin ◽  
Nikolay Prikhodko ◽  
Ramona Heim

Wildfires are one of the main factors for landscape change in tundra ecosystems. In the absence of external mechanical impacts, tundra plant communities are relatively stable, even in the face of climatic changes. In our study, lichen cover was degraded on burnt tundra sites, which increased the permafrost thaw depth from 100 to 190 cm. In old fire scars (burnt 1980 – 1990) of the forest-tundra, vegetation cover was dominated by trees and shrubs. The soil temperature on burnt forest-tundra sites was higher in comparison to conditions of the unburnt control sites and permafrost was was not found at a depth of 2-2,3m. Dynamics of the Normalized Difference Vegetation index (NDVI) from 1986-2020 reveal that immediately after fires, vegetation recovered and biomass increased due to the development of Betula nana shrubs. In old fire scars of the forest-tundra (burnt 1980-1990), a significant increase in NDVI values was evident, in contrast to the unburnt tundra vegetation where this trend was less pronounced. We conclude that "greening" in the north of Western Siberia may occur due to fire-induced transformation processes. The role of wildfires in the advance of the treeline to the north, driven by climate change and active economic development of the Arctic, will gradually increase in future.


2020 ◽  
Author(s):  
Jean-Louis Bonne ◽  
Hanno Meyer ◽  
Melanie Behrens ◽  
Julia Boike ◽  
Sepp Kipfstuhl ◽  
...  

Abstract. In the context of the Arctic amplification of climate change affecting the regional atmospheric hydrological cycle, it is crucial to characterize the present-day’s moisture sources of the Arctic. The isotopic composition is an important tool to enhance our understanding of the drivers of the hydrological cycle, due to the different molecular characteristics of water stable isotopes during phase change. This study introduces two years of continuous in situ water vapour and precipitation isotopic observations conducted since July 2015 in the east-Siberian Lena delta, at the research station on the Samoylov Island. The vapour isotopic signals are dominated by variations at the seasonal and synoptic time scales. Diurnal variations of the vapour isotopic signals are masked by synoptic variations, indicating low variations of the amplitude of local sources at the diurnal scale in winter, summer and autumn. Low amplitude diurnal variations in spring may indicate exchange of moisture between the atmosphere and the snow-covered surface. Moisture sources diagnostics based on semi-Lagrangian backward trajectories reveal that different air mass origins have contrasted contributions to the moisture budget of the Lena delta region. At the seasonal scale, the distance from the net moisture sources to the arrival site strongly varies. During the coldest months, no contribution from local secondary evaporation is observed. Variations of the vapour isotopic composition during the cold season on synoptic time scale are strongly related to moisture source regions and variations in the atmospheric transport: warm and isotopically-enriched moist air is linked with fast transport from the Atlantic sector; while dry and cold air with isotopically-depleted moisture is generally associated to air masses moving slowly over northern Eurasia.


2021 ◽  
Author(s):  
M. Veklich ◽  
I. Goncharov ◽  
A. Zherdeva ◽  
N. Oblasov ◽  
V. Samoilenko

Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 173
Author(s):  
Alexander Matul ◽  
Galina Kh. Kazarina

The paper presents micropaleontological information and observations of the North Pacific diatom species Neodenticula (N.) seminae (Simonsen and Kanaya) Akiba and Yanagisawa in the surface and Holocene sediments from the North Atlantic, Nordic, and Arctic Seas. The compilation of previously published data and new findings of this study on N. seminae in the surface sediments shows its broad occurrence as a usual element of the modern diatom microflora in the Nordic, Labrador, and Irminger Seas. The recent migration of N. seminae from its native area, the Subarctic Pacific, reflects the oceanographic shift in the late 1990s as greater transport of the warmer surface Pacific water to the Arctic causes Arctic sea-ice reduction. Micropaleontological studies of the Holocene sediments document the multiple events of N. seminae appearance in the Arctic during the latest Pleistocene and Holocene warming intervals. These observations can suggest the events of the increased influence of the North Pacific water on the Arctic environments in the past, not just during the recent warm climate amplification.


1973 ◽  
Vol 3 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Nicklas G. Pisias ◽  
J.Paul Dauphin ◽  
Constance Sancetta

AbstractSpectral analysis of deep-sea sediments indicates that the fluctuations in compositional parameters are not random fluctuations with time. Spectra show significant peaks representing periodicities in the data of 380, 1300, and 2600 years. Two of these periods are similar to periods reported in 14C fluctuations. Analysis of a paleotemperature curve from the North Atlantic shows that the characteristics of the fluctuations within interglacial and glacial stages of the climate are similar, and that the spectrum has a significant peak at 2600 years.


2020 ◽  
Vol 19 (7) ◽  
pp. 34-43
Author(s):  
Nataliia M. Chairkina ◽  
Evgenyi M. Besprozvannyi ◽  
Vyacheslav I. Molodin

Purpose. Archaeological science has intensively developed in the last few decades. The methodology is being improved, the number of investigated objects is increasing, and archaeological material is accumulating. One of the most important aspects of scientific activity is the integration of the results of work into the scientific community. Results. On March 16–19, 2020, a scientific seminar named “The complexes with flat-bottomed ceramics in the Neolithic of the Urals and Western Siberia: typology, technology, chronology, genesis” was held in Yekaterinburg. More than 50 leading specialists came from the Urals, Western Siberia, Germany and Japan. The set of reports were presented, each presentation was followed by a discussion. The participants had an opportunity to examine the collections of the archaeological sites with flat-bottomed pottery. At the final discussion, a number of serious conclusions were made. They are relevant for the entire region of Northern Eurasia, not only for the Urals and Western Siberia. Conclusion. It has been confirmed that flat-bottomed pottery appeared in Western Siberia and the Urals in the 7th millennium BC. The earliest complexes were discovered in the Baraba forest-steppe and in the Taiga regions in the North of Western Siberia. In local areas, different types of dishes are distinguished, having both similar features and differences. Discussions remain the genesis of morphologically different vessels. Problems of the attitude of complexes of flat-bottomed ceramics to the early and late stages of the Neolithic, the paths and variants of neolithization processes, the spread of ceramic production in a wide area of the region. The current problem of the ratio of Upper Paleolithic, Mesolithic and Early Neolithic formations in the region appears to be relevant. As well as the time of the invention of pottery by man, the fact which radically changed his economy and culture, as well as the physiology of man himself.


2002 ◽  
Vol 54 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Scott A. Elias

Abstract The study of fossil beetles has played an important role in the reconstruction of Beringian paleoenvironments. More than 25 fossil localities have yielded Late Pleistocene beetle assemblages, comprising more than 300 species, of which about 147 are predators and scavengers, groups which are suitable for paleoclimatic reconstruction. The author has developed climate envelopes (climatic parameters characterizing the modern localities in which species are found) for these species, in order to perform mutual climatic range pale- otemperature studies. This paper describes the thermal requirements of these beetles, and their zoogeographic history since the interval just prior to the last interglacial period. The fossil assemblages include 14 arctic and alpine species, 66 boreo-arctic species, and 68 boreal and temperate species. The greatest percentage of species with restricted thermal requirements occurs in the arctic and alpine group. The majority of boreo-arctic and boreal and temperate species have very broad thermal requirements. Based on modern distribution and the North American fossil record, it appears that some species resided exclusively in Beringia during the Late Pleistocene. These Beringian species comprise 64 % of the arctic and alpine species found in the fossil assemblages, 34 % of the boreo-arctic species, and only 1 % of the boreal and temperate species.


Sign in / Sign up

Export Citation Format

Share Document