Classification of zoogenic and anthropogenic vegetation of Central-Siberian sector of the Arctic (Taymyr Peninsula, Severnaya Zemlya Archipelago)

2001 ◽  
pp. 6-16 ◽  
Author(s):  
L. L. Zanokha

The grassland vegetation which occurs in places of animal colonies or around human settlements in the Central-Siberian sector of the Arctic is referred to 2 new associations, namely Saxifrago cernuae—Alopecuretum alpini and Poo arcticae—Calamagrostietum holmii ass. nov., and also to 2 variants (inops and Astragalus umbellatus var. nov) of the previously described associa­tion Saxifrago hirculi—Poetum alpigenae (Zanokha, 1995). The first association is distributed within the whole Taymyr Peninsula and also the part of the polar desert subzone in the Bolshevik Isl. The grass cover is formed by Poa alpigena and Alopecurus alpinus in various combinations of their dominance. The ass. Poo arcticae—Calamagrostietum holmii is distributed only throughout the tundra zone of Taymyr; its grass layer consists of Calamagrostis holmii and Poa arctica. The mentioned variants of ass. Saxifrago hirculi—Poetum alpigenae occur locally in the vicinities of Dixon settlement.

2006 ◽  
pp. 3-87 ◽  
Author(s):  
N. V. Matveyeva

Bolshevik Isl. is the one of the largest islands within the Severnaya Zemlya archipelago. It is situated in the southern part of the polar desert zone. In the course of three field work trips in 1997, 1998 and 2000 years 252 relevees were made in its southern part on three geomorphologic surfaces: coastal plain, inner upland close to glacier and ancient high river terraces. As the result 27 syntaxonomical units of different rank (15 associations, 2 subassociations, 2 variants, and 8 community types) were described using Braun-Blanquet approach. All syntaxa, except one, are new and mostly similar to communities described on Franz Josef Land. The problems were to put new syntaxa into the higher level units (including class) within the syntaxonomical hierarchy. The main bulk of syntaxa, both zonal and intrazonal ones, has to be preliminary placed into Salicetea herbaceae class although there is a lot of reasons to consider zonal syntaxa as a new class that is specific for the polar desert zone. In any case, there are no one syntaxon that can be referred to Loiseleurio-Vaccinietea class that combines zonal vegetation in the tundra zone. The wide ecological range of great majority of species as well as the changes of their intralandscape distribution compare to the tundra zone made additional difficulties in finding character and differential species. 340 species (vascular plants — 52, mosses — 97, liverworts — 41, lichens — 150), that compiles 73 % of the whole island flora and 84 % of its southern part, were recorded within the all relevees. Almost half of these (182) are very rare on the island and 127 species were met 1—2 times. There are 70 species with wide ecological range throughout all landscape types with such commonly distributed herbs as Saxifraga cernua, S. hyperborea and Stellaria ed­ward­sii, mosses Polytrichastrum alpinum and Sanionia uncinata and lichen Stereocaulon rivulorum among these. Phippsia algida, the character species for snow bed communities, occurs in about 70 % of syntaxa. Useful for differentiation of syntaxa have been appeared 87 species. Few species with wide distribution within a landscape demonstrate their preference to a certain syntaxon by higher abundance (preferential character species). These are mostly bryophytes: mosses Bryum cryophilum and Grimmia torquata, and liver­worts Gymnomitrion corallioides, Marsupella arctica and Scapania crassiretis. Cryptogam species predo­minate in the whole flora as well as in each syntaxon. The number of species varies from 12 to 70 per sample plots 5÷5 m and from 20 to 195 in different syntaxa. The richest in species (70 per community and about 190 for association) are zonal plant communities on the accumulative coastal plain in the region of Sol­nechnaya Bay, the poorest one, with 10 and 20 species consequently, is ass. Hygrohypno polari—Saxifragetosum hyperboreae that was described on the upland, close to glacier in the inner part of island.


2021 ◽  
pp. 113-149
Author(s):  
E. D. Lapshina ◽  
I. V. Filippov ◽  
V. E. Fedosov ◽  
Yu. V. Skuchas ◽  
P. Lamkowski ◽  
...  

There are very few publications on the classification of mountain mire vegetation in Russia. Several associations in the Southern Siberia mountains (Lapshina, 1996; Lashchinsky, 2009) and the Khibiny Mountains (Koroleva, 2001) are described. Mire vegetation in the Southern Urals is relatively well studied and described in the traditions of the ecological-phytocenotic dominant classification (Ivchenko, 2013; Ivchenko, Znamenskiy, 2015) while the knowledge on that of the Northern and Sub-Polar Urals is extremely limited. There is no information about the mires in the Polar Urals. The paper presents the results of classification of the class Scheuchzerio–Caricetea fuscae of the Yanganape mountain massif (67.68°—67.75° N, 67.72°—68.00° E) and adjacent plains in the Eastern macroslope of the Polar Urals, within the southern tundra subzone. The study area is mountain massif of about 250 m a. s. l., composed of limestone outcrops, with a wavy flat (60–90 m a. s. l.) plain around (Fig. 1–2). The classification is based on 138 relevés made in July 27–August 8, 2017 (Fig. 3). Relevés of similar syntaxa, established in the north of the Western Europe and the East European tundras (Ruuhijärvi, 1960; Dierssen, 1982; Lavrinenko et al., 2016), were included in analysis. DCA and t-SNE (t-distributed stochastic neighbor embedding) methods were used for ordination of syntaxa in multidimensional space (Maaten, Hinton, 2008). The calculations were made using the machine learning package for Python-Scikit-learn. In total, 13 associations, 11 subassociations, 12 variants from 6 alliances and 3 orders of the class Scheuchzerio–Caricetea fuscae were identified on the relatively small (about 70 km2) area. Within the order Caricion davallianae, syntaxa of the alliance Caricion atrofuscae-saxatilis, comprising low sedge-hypnum communities on carbonate mineral and organomineral soils in the mountains of the Western Europe, were identified and described for the first time on the territory of Russia. Three new associations (Ditricho flexicauli—Caricetum redowskianae, Tomentypno nitentis–Equisetetum palustre, Tomentypno nitentis–Eriophoretum vaginati) were described on the the Yanganape mountain massif (Table 1), which significantly expands the area of the alliance to the East. Alliance’ communities have some similarities with syntaxa of zonal dwarf shrub-grass-moss tundra vegetation (Lavrinenko, Lavrinenko, 2018), but are generally well differed by the species composition and community structure (Table 5). The order Caricetalia fuscae in the Eastern macroslope of the Polar Urals is represented by 4 alliances. In addition to Drepanocladion exannulati and Sphagno-Caricion canescentis, listed in the “Classification of Vegetation of Europe” (Mucina et al., 2016), we include into order the alliance Caricion stantis — moderately rich sedge-moss fen vegetation of the Subarctic and tundra zones, and the alliance Stygio–Caricion limosae, containing extremely waterlogged meso-oligotrophic and slightly acidic to neutral low sedge fens. There are 4 associations within the alliance Caricion stantis, including new ass. Scorpidio cossonii–Caricetum rariflorae (Table 2). Taking into account statistically significant differences in the species composition of sedge-moss communities dominated by various moss species (Fig. 15, 5-6), ass. Scorpidio scorpioidis–Caricetum chordorrhizae was taken out from ass. Drepanoclado revolventis–Caricetum chordorrhizae Osvald 1925 ex Dierssen 1982 broadly understood in the Western Europe. Its nomenclature type is the only relevé of Carex chordorrhizae-Amblistegium scorpioides-Ass. (Osvald 1925: 37), which sufficient for the original diagnosis, because it contains list of species with abundance and both name-giving taxa (ICPN, 2b, 7). The communities of both associations were identified in the Eastern macroslope of the Polar Urals, where they are represented by new subassociations, which significantly expands the distribution area of these associations to the East. Recently validly described in the Eastern European tundras (Lavrinenko et al., 1916) ass. Scorpidio revolventis–Caricetum rariflorae is also known for the North of the Western Europe (Dierssen, 1982). Its difference from western syntaxa is the absence of many boreal species, which are not able to exist in the severe climate in the North of Western Siberia, as well as the great number of plant communities with the diagnostic species of the alliance Caricion atrofuscae-saxatilis due to rich mineral nutrition, associated with the carbonate soils and calcium-rich groundwaters in the study area. New associations are established in two allian­ces: Carici aquatilis–Warnstorfietum tundrae in Drepanocladion exannulati and Sphagno squarrosi–Caricetum chordorrhizae in Sphagno–Caricion canescentis (Table 3). The floristic features of the latter alliance, whose communities on the northern limit of their distribution have a certain similarity to the arctic sedge-moss mire vegetation of the alliance Caricion stantis, are discussed. Oligotrophic communities of the alliance Scheuch­zerion palustris, occuring in acidic habitats, are placed in the order Scheuchzerietalia palustris that is in agreement with new interpretation of this alliance in the paper by Mucina et al. (2016). Two associations (Carici rotundatae–Sphagnetum baltici, Sphagno compaci–Caricetum rotundatae) are assigned to this alliance. There are few relevés for both Scheuchzerion palustris and Stygio–Caricion limosae alliances in the study area that is why their classification is preliminary, and it will be considered in the near future for the whole North of the Western Siberia on a larger data set. The classification results are confirmed by DCA-ordination of selected syntaxa (Fig.15, Б). However, the differentiation of communities is more clearly demonstrated by the t-SNE method, which allows displaying multidimensional hyperspaces on the plane (Fig.15, А).


2021 ◽  
Vol 325 (2) ◽  
pp. 248-268
Author(s):  
N.V. Chernova ◽  
V.A. Spiridonov ◽  
V.L. Syomin ◽  
M.V. Gavrilo

Data on the fishes of the high-latitude Severnaya Zemlya archipelago (the North Land) is presented. The archipelago is located in the Arctic on the border between the Kara Sea and the Laptev Sea. The ichthyofauna of the archipelago has not been studied; therefore, even small collections are of interest. Fish samples were obtained during the expedition “Open Ocean: Arctic Archipelagos – 2019: Severnaya Zemlya”. In addition, the samples from this area in the collections of the Zoological Institute (ZIN) were studied, which have been received from polar expeditions to the Kara and Laptev seas during the entire era of polar research. The most significant fact is the discovery of mass accumulation of polar cod Boreogadus saida (Lepechin, 1774) larvae in Mikoyan Bay (Bolshevik Island), which gives evidence of important spawning grounds near Severnaya Zemlya. Indirect evidence of this can be found in the publications of polar explorers who overwintered on Severnaya Zemlya in the 1930s–1950s and have reported that the polar cod approaches the shores for spawning in August, in huge schools. The waters of Severnaya Zemlya represent the spawning area of polar cod in the central part of the Eurasian shelf, which is not mentioned in current literature. In addition to polar cod, a few more species are registered in samples from the coastal waters of the archipelago (depths to 38 m), rough hookear sculpin Artediellus scaber Knipowitsch, 1907, twohorn sculpin Icelus bicornis (Reinhardt, 1840) (family Cottidae), Liparis tunicatus Reinhardt, 1836, black-bellied snailfish L. cf. fabricii (Liparidae), Knipowich eelpout Gymnelus knipowitschi Chernova, 1999 (Zoarcidae) and three-spined stickleback Gasterosteus aculeatus (Linnaeus, 1758) (Gasterosteidae). In the deepwater straits, snailfish Careproctus sp. (174–234 m) and pale eelpout Lycodes pallidus Collett, 1879 (105–348 m) were found. The Arctic charr Salvelinus alpinus (Linnaeus, 1758) (Salmonidae) inhabits some lakes of the archipelago. This is the first finding of a three-spined stickleback in the east of the Kara Sea.


2002 ◽  
pp. 32-41 ◽  
Author(s):  
N. V. Matveyeva

New association Dicranoweisio-Deschampsietum ass. nov. with 2 variants within the class Salicetea herbaceae Br.-Bl. 1947 is described for the cold desert belt of the Putorana plateau (Srednesibirskoe plateau). Its species composition represents the combination of species charac­ter for both the snow beds in the northern part of Taymyr peninsula (ass. Deschampsio-Cerastietum regelii Mat­veye­va 1994) and zonal vegetation of the polar deserts (асс. Aulacomnio-Deschampsietum prov., unpublished author’s data) on Bolshevik Isl. (Severnaya Zemlya Archipelago) with common dominating tufted grass De­schampsia borealis. Compare to the mentioned associa­tions it is poorer in species numbers within all groups of plants (vascular, mosses, liverworts, lichens) due to the restricted number of plain arctic species. Its horizontal structure demonstrates a larger similarity with the polar desert communities.


2019 ◽  
Vol 12 (3) ◽  
pp. 16-26
Author(s):  
Victor V. Kharitonov

Three first-year ice ridges have been examined with respect to geometry and morphology in landfast ice of Shokal'skogo Strait (Severnaya Zemlya Archipelago) in May 2018. Two of the studied ice ridges were located on the edge of the ridged field and were part of it, because their keels extended for a long distance deep into this field. Ice ridges characteristics are discussed in the paper. These studies were conducted using hot water thermal drilling with computer recording of the penetration rate. Boreholes were drilled along the cross-section of the ridge crest at 0.25 m intervals. Cross-sectional profiles of ice ridges are illustrated. The maximal sail height varied from 2.9 up to 3.2 m, the maximal keel depth varied from 8.5 up to 9.6 m. The average keel depth to sail height ratio varied from 2.8 to 3.3, and the thickness of the consolidated layer was 2.5-3.5 m. The porosity of the non-consolidated part of the keel was about 23-27%. The distributions of porosity versus depth for all ice ridges are presented.


Author(s):  
Yu.V. Razovsky ◽  
◽  
M.S. Ruban ◽  
E.Yu. Gorenkova ◽  
◽  
...  
Keyword(s):  

2003 ◽  
pp. 28-40 ◽  
Author(s):  
L. L. Zanokha

The 2 new associations, Carici stantis—Salicetum reptantis and Salico-Polemonietum acutiflori, are described within the all. Caricionstantis of the class Scheuchzerio-Caricetea fuscae R. Tx. 1937 for the northern belt of the typical tundra subzone of Taymyr. The diagnostic species group of the first syntaxon includes plants typical of sites with excessive watering. The ass. Carici stantis—Salicetum reptantis is restricted to bottoms or lower parts of the watershed and moun­tain terrace slopes. The ecological regime of these sites is subject to slight variations reflected in presence/ absence of certain species. Due to floristic differences, the association is subdivided into several subassociations which form a topographic-ecological series along the humidity gradient: epilobietosum palustris→ptilidietosum ciliaris→typicum→petasitetosum frigidi. The ass. Carici stantis—Salicetum reptantis is referred to the all. Caricionstantis which also includes the associations Meesiotriquetris—Caricetumstantis and Pooarcticae—Dupontietumfisheri (also described from the Ragozinka R. basin); the latter occur in the wet depres­sions between sloping hills and the flowing valleys, respectively. If compared to these two, the ass. Carici stantis—Salicetum reptantis is shown to hold an intermediate position between them. The ass. Salico-Polemonietum acutiflori with the 2 variants, Salix lanata and S. reptans, represents various variants of mire vegetation which have under­gone zoogenic transformation (by lemmings). The stands size 1—1.5 m2 in space. The diagnostic species group comprises plants common of the wet mossy stream banks. The association is referred to the all. Caricion stantis, although many diagnostic species of the alliance are not present in its composition. When the new data are available, the association is probable to be separated into an independent alliance.


2016 ◽  
Vol 88 (suppl 1) ◽  
pp. 689-703 ◽  
Author(s):  
ANTONIO GALÁN-DE-MERA ◽  
ISIDORO SÁNCHEZ-VEGA ◽  
ELIANA LINARES-PEREA ◽  
JOSÉ CAMPOS ◽  
JUAN MONTOYA ◽  
...  

ABSTRACT A phytosociological approach to dry forest and cactus communities on the occidental slopes of the Peruvian Andes is presented in base of 164 plots carried out following the Braun-Blanquet method. From them, 52 have been made recently, and the other 112 were taken from the literature. After a multivariate analysis, using a hierarchical clustering and a detendred correspondence analysis, the Acacio-Prosopidetea class (dry forest and cactus communities, developed on soils with some edaphic humidity or precipitations derived from El Niño Current), the Opuntietea sphaericae class (cactus communities of central and southern Peru, on few stabilized rocky or sandy soils) and the Carico-Caesalpinietea class (dry forests of the Peruvian coastal desert, influenced by the maritime humidity of the cold Humboldt Current), are differentiated. Within the Acacio-Prosopidetea class, two alliances are commented: the Bursero-Prosopidion pallidae (with two new associations Loxopterygio huasanginis-Neoraimondietum arequipensis and Crotono ruiziani-Acacietum macracanthae), and the new alliance Baccharido-Jacarandion acutifoliae (with the new associations Armatocereo balsasensis-Cercidietum praecocis and Diplopterydo leiocarpae-Acacietum macracanthae). For the Opuntietea sphaericae class, the association Haageocereo versicoloris-Armatocereetum proceri (Espostoo-Neoraimondion) is described on the basis of plots from hyperarid localities of central Peru. Finally, a typological classification of the studied plant communities is given.


2018 ◽  
Vol 12 (11) ◽  
pp. 3589-3604 ◽  
Author(s):  
Claire Bernard-Grand'Maison ◽  
Wayne Pollard

Abstract. Quantifying ground-ice volume on a regional scale is necessary to assess the vulnerability of permafrost landscapes to thaw-induced disturbance like terrain subsidence and to quantify potential carbon release. Ice wedges (IWs) are a ubiquitous ground-ice landform in the Arctic. Their high spatial variability makes generalizing their potential role in landscape change problematic. IWs form polygonal networks that are visible on satellite imagery from surface troughs. This study provides a first approximation of IW ice volume for the Fosheim Peninsula, Ellesmere Island, a continuous permafrost area characterized by polar desert conditions and extensive ground ice. We perform basic GIS analyses on high-resolution satellite imagery to delineate IW troughs and estimate the associated IW ice volume using a 3-D subsurface model. We demonstrate the potential of two semi-automated IW trough delineation methods, one newly developed and one marginally used in previous studies, to increase the time efficiency of this process compared to manual delineation. Our methods yield acceptable IW ice volume estimates, validating the value of GIS to estimate IW volume on much larger scales. We estimate that IWs are potentially present on 50 % of the Fosheim Peninsula (∼3000 km2), where 3.81 % of the top 5.9 m of permafrost could be IW ice.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrey K. Khudoley ◽  
Tom Andersen ◽  
Kåre Kullerud ◽  
...  

U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.


Sign in / Sign up

Export Citation Format

Share Document