scholarly journals The Finnish matriculation examination in biology from 1921 to 1969 – trends in knowledge content and educational form

Author(s):  
Jakke Neiro ◽  
Niko Johansson

The history and evolution of science assessment remains poorly known, especially in the context of the exam question contents. Here we analyze the Finnish matriculation examination in biology from the 1920s to 1960s to understand how the exam has evolved in both its knowledge content and educational form. Each question was classified according to its topic in biology, and its cognitive level by Bloom’s taxonomy. Overall, the exam progressed from a rather dichotomous test of botany and zoology to a modern exam covering biology from biochemistry to environmental science, reflecting the development of biology as a scientific discipline. The contribution of genetics increased steadily, while ecology witnessed a decline and a renaissance during the same time period. The biological profile of the questions was established by the 1950s. The educational standard and cognitive demand of the questions was always high and established by the 1940s. Tiivistelmä Luonnontieteellisten koekysymysten historiaa ja kehitystä on tutkittu hyvin vähän. Biologian ylioppilaskokeen kysymyksiä tarkasteltiin 1920-luvulta 1960-luvulle koekysymysten sisällöllisen ja opetuksellisen kehityksen selvittämiseksi. Kysymykset luokiteltiin biologisiin sisältöluokkiin, kun taas kognitiivinen taso arvioitiin Bloomin asteikolla. Tarkastelujakson aikana koe kehittyi kaksijakoisesta kasvi- ja eläintiedettä käsittelevästä kuulustelusta uudenaikaiseksi kokeeksi, joka tarkasteli biologiaa biokemiasta ympäristötieteeseen, heijastaen biologian kehitystä tieteenalana. Perinnöllisyystieteen osuus kokeessa kasvoi tasaisesti, kun taas ekologia koki jonkinasteisen taantuman ja uudelleentulemisen samalla aikavälillä. Kysymysten biologinen profiili vakiintui 1950-luvulla. Kysymysten opetuksellinen taso ja kognitiivinen vaatimustaso oli korkea alusta saakka ja vakiintui jo 1940-luvulla.

Environments ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 98
Author(s):  
Farhan R. Khan ◽  
Stephanie Storebjerg Croft ◽  
Elisa Escabia Herrando ◽  
Athanasios Kandylas ◽  
Tabea Meyerjuergens ◽  
...  

A convincing case has been made that the scale of human activity has reached such pervasiveness that humans are akin to a force of nature. How environmental science responds to the many new challenges of the Anthropocene is at the forefront of the field. The aim of this perspective is to describe Anthropocene as a concept and a time period and discuss its relevance to the contemporary study of environmental science. Specifically, we consider areas in environmental science which may need to be revisited to adjust to complexity of the new era: (a) recalibrate the idea of environmental baselines as Anthropogenic baselines; (b) rethink multiple stressor approaches to recognize a system under flux; (c) re-evaluate the relationship of environmental science with other disciplines, particularly Earth Systems Science, but also social sciences and humanities. The all-encompassing nature of the Anthropocene necessitates the need to revise and reorganize to meet the challenge of complexity.


2020 ◽  
Author(s):  
Aleksandr Shevcov

In the textbook systematically described the concept of logic — of the subject, understood as the Foundation of philosophy. Special emphasis is placed on the historical background of the development of logic, it is emphasized that logic as a scientific discipline was formed in close connection with other Sciences, including natural science profile. Content of the manual fully complies with the requirements of Federal state educational standard of higher education in the direction of training 47.04.01 "Philosophy". Recommended for students of higher educational institutions studying the history of philosophy, University professors, and others interested in philosophy.


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


Author(s):  
Itaru Watanabe ◽  
Dante G. Scarpelli

Acute thiamine deficiency was produced in mice by the administration of oxythiamine, a thiamine analogue, superimposed upon a thiamine deficient diet. Adult male Swiss mice (30 gm. B.W.) were fed with a thiamine deficient diet ad libitumand were injected with oxythiamine (170 mg/Kg B.W.) subcutaneously on days 4 and 10. On day 11, severe lassitude and anorexia developed, followed by death within 48 hours. The animals treated daily with subcutaneous injections of thiamine (300 μg/Kg B.W.) from day 11 through 15 were kept alive. Similarly, feeding with a diet containing thiamine (600 μg/Kg B.W./day) from day 9 through 17 reversed the condition. During this time period, no fatal illness occurred in the controls which were pair-fed with a thiamine deficient diet.The oxythiamine-treated mice showed a significant enlargement of the liver, which weighed approximately 1.5 times as much as that of the pair-fed controls. By light and electron microscopy, the hepatocytes were markedly swollen due to severe fatty change and swelling of the mitochondria.


Author(s):  
Robert E. Ogilvie

The search for an empirical absorption equation begins with the work of Siegbahn (1) in 1914. At that time Siegbahn showed that the value of (μ/ρ) for a given element could be expressed as a function of the wavelength (λ) of the x-ray photon by the following equationwhere C is a constant for a given material, which will have sudden jumps in value at critial absorption limits. Siegbahn found that n varied from 2.66 to 2.71 for various solids, and from 2.66 to 2.94 for various gases.Bragg and Pierce (2) , at this same time period, showed that their results on materials ranging from Al(13) to Au(79) could be represented by the followingwhere μa is the atomic absorption coefficient, Z the atomic number. Today equation (2) is known as the “Bragg-Pierce” Law. The exponent of 5/2(n) was questioned by many investigators, and that n should be closer to 3. The work of Wingardh (3) showed that the exponent of Z should be much lower, p = 2.95, however, this is much lower than that found by most investigators.


1999 ◽  
Vol 4 (5) ◽  
pp. 4-7 ◽  
Author(s):  
Laura Welch

Abstract Functional capacity evaluations (FCEs) have become an important component of disability evaluation during the past 10 years to assess an individual's ability to perform the essential or specific functions of a job, both preplacement and during rehabilitation. Evaluating both job performance and physical ability is a complex assessment, and some practitioners are not yet certain that an FCE can achieve these goals. An FCE is useful only if it predicts job performance, and factors that should be assessed include overall performance; consistency of performance across similar areas of the FCE; consistency between observed behaviors during the FCE and limitations or abilities reported by the worker; objective changes (eg, blood pressure and pulse) that are appropriate relative to performance; external factors (illness, lack of sleep, or medication); and a coefficient of variation that can be measured and assessed. FCEs can identify specific movement patterns or weaknesses; measure improvement during rehabilitation; identify a specific limitation that is amenable to accommodation; and identify a worker who appears to be providing a submaximal effort. FCEs are less reliable at predicting injury risk; they cannot tell us much about endurance over a time period longer than the time required for the FCE; and the FCE may measure simple muscular functions when the job requires more complex ones.


Sign in / Sign up

Export Citation Format

Share Document