scholarly journals Development of Gastroretentive Floating Tablets Quetiapine Fumarate

2019 ◽  
Vol Volume-3 (Issue-4) ◽  
pp. 1037-1040
Author(s):  
Priyanka Lekhwar ◽  
◽  
Dr. P. K. Sahoo ◽  
Ravindra Agarwal | Amit Sharma
2021 ◽  
Vol 11 (3-S) ◽  
pp. 65-73
Author(s):  
Keyur S. Patel ◽  
Akshar N. Rao ◽  
Deepa R. Patel ◽  
Dhaval M. Patel ◽  
Advaita B. Patel

The objective of the present study was to develop gastroretentive floating tablets of quetiapine fumarate. The gastroretentive floating tablets of quetiapine fumarate were formulated using natrosol 250 HHX as a sustained release polymer and sodium bicarbonate as a gas forming agents.  A 32 factorial design was employed to study the influence of concentration of natrosol HHX 250 (X1) and concentration of sodium bicarbonate (X2) on the dependent variables % drug release at 1h (Y1), % drug release at 8 h (Y2) and floating lag time (Y3). The optimized formulation (O1) showed floating lag time 49 ± 3 sec and % drug release 99.54± 0.81 at 12 h. The in vitro release of F1-F9 batches were found in between 99.95 ± 1.18 %  to  86.32 ±1.71 % at 12 h. Floating lag time of F1-F9 batches were found to be 25± 2 sec to 178 ± 3 sec. FTIR studies shown that there was no  interaction between quetiapine fumarate and excipients. From the factorial design batches it was found that floating lag time was decreased with increasing the amount of sodium bicarbonate and decreasing the amount of natrosol 250 HHX. Here % release of drug was decreased with increase the extent of natrosol 250 HHX. The in-vitro release kinetics revealed Korsmeyer-Peppas model is followed and drug release is by anomalous diffusion. Keywords: Quetiapine fumarate, Natrosol 250 HHX, Sodium bicarbonate, Gastroretentive floating tablets


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


2017 ◽  
Vol 5 (2) ◽  
pp. 26-44
Author(s):  
Vageesh N.M ◽  
◽  
Sri Sura Ramya ◽  
Begum K Gulijar ◽  
Swathi B ◽  
...  

2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


2017 ◽  
Vol 44 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Kai Chen ◽  
Haoyang Wen ◽  
Feifei Yang ◽  
Yibin Yu ◽  
Xiumei Gai ◽  
...  

2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


Sign in / Sign up

Export Citation Format

Share Document