scholarly journals Einstein Geometric Aggregation Operators using a Novel Complex Interval-valued Pythagorean Fuzzy Setting with Application in Green Supplier Chain Management

2021 ◽  
Vol 2 (1) ◽  
pp. 105-134
Author(s):  
Zeeshan Ali ◽  
◽  
Tahir Mahmood ◽  
Kifayat Ullah ◽  
Qaisar Khan ◽  
...  

The principle of a complex interval-valued Pythagorean fuzzy set (CIVPFS) is a valuable procedure to manage inconsistent and awkward information genuine life troubles. The principle of CIVPFS is a mixture of the two separated theories such as complex fuzzy set and interval-valued Pythagorean fuzzy set which covers the truth grade (TG) and falsity grade (FG) in the form of the complex number whose real and unreal parts are the sub-interval of the unit interval. The superiority of the CIVPFS is that the sum of the square of the upper grade of the real part (also for an unreal part) of the duplet is restricted to the unit interval. The goal of this article is to explore the new principle of CIVPFS and its algebraic operational laws. By using the CIVPFSs, certain Einstein operational laws by using the t-norm and t-conorm are also developed. Additionally, we explore the complex interval-valued Pythagorean fuzzy Einstein weighted geometric (CIVPFEWG), complex interval-valued Pythagorean fuzzy Einstein ordered weighted geometric (CIVPFEOWG) operators and utilized their special cases. Moreover, a multicriteria decision-making (MCDM) technique is explored based on the elaborated operators by using the complex interval-valued Pythagorean fuzzy (CIVPF) information. To determine the consistency and reliability of the elaborated operators, we illustrated certain examples by using the explored principles. Finally, to determine the supremacy and dominance of the explored theories, the comparative analysis and graphical expressions of the developed principles are also discussed.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Tehreem ◽  
Amjad Hussain ◽  
Jung Rye Lee ◽  
Muhammad Sajjad Ali Khan ◽  
Dong Yun Shin

Pythagorean cubic set (PCFS) is the combination of the Pythagorean fuzzy set (PFS) and interval-valued Pythagorean fuzzy set (IVPFS). PCFS handle more uncertainties than PFS and IVPFS and thus are more extensive in their applications. The objective of this paper is under the PCFS to establish some novel operational laws and their corresponding Einstein weighted geometric aggregation operators. We describe some novel Pythagorean cubic fuzzy Einstein weighted geometric (PCFEWG) operators to handle multiple attribute group decision-making problems. The desirable relationship and the characteristics of the proposed operator are discussed in detail. Finally, a descriptive case is given to describe the practicality and the feasibility of the methodology established.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 145
Author(s):  
Yun Jin ◽  
Zareena Kousar ◽  
Kifayat Ullah ◽  
Tahir Mahmood ◽  
Nimet Yapici Pehlivan ◽  
...  

Interval-valued T-spherical fuzzy set (IVTSFS) handles uncertain and vague information by discussing their membership degree (MD), abstinence degree (AD), non-membership degree (NMD), and refusal degree (RD). MD, AD, NMD, and RD are defined in terms of closed subintervals of that reduce information loss compared to the T-spherical fuzzy set (TSFS), which takes crisp values from intervals; hence, some information may be lost. The purpose of this manuscript is to develop some Hamacher aggregation operators (HAOs) in the environment of IVTSFSs. To do so, some Hamacher operational laws based on Hamacher t-norms (HTNs) and Hamacher t-conorms (HTCNs) are introduced. Using Hamacher operational laws, we develop some aggregation operators (AOs), including an interval-valued T-spherical fuzzy Hamacher (IVTSFH) weighted averaging (IVTSFHWA) operator, an IVTSFH-ordered weighted averaging (IVTSFHOWA) operator, an IVTSFH hybrid averaging (IVTSFHHA) operator, an IVTSFH-weighted geometric (IVTSFHWG) operator, an IVTSFH-ordered weighted geometric (IVTSFHOWG) operator, and an IVTSFH hybrid geometric (IVTSFHHG) operator. The validation of the newly developed HAOs is investigated, and their basic properties are examined. In view of some restrictions, the generalization and proposed HAOs are shown, and a multi-attribute decision-making (MADM) procedure is explored based on the HAOs, which are further exemplified. Finally, a comparative analysis of the proposed work is also discussed with previous literature to show the superiority of our work.


2021 ◽  
pp. 1-23
Author(s):  
Peide Liu ◽  
Tahir Mahmood ◽  
Zeeshan Ali

Complex q-rung orthopair fuzzy set (CQROFS) is a proficient technique to describe awkward and complicated information by the truth and falsity grades with a condition that the sum of the q-powers of the real part and imaginary part is in unit interval. Further, Schweizer–Sklar (SS) operations are more flexible to aggregate the information, and the Muirhead mean (MM) operator can examine the interrelationships among the attributes, and it is more proficient and more generalized than many aggregation operators to cope with awkward and inconsistence information in realistic decision issues. The objectives of this manuscript are to explore the SS operators based on CQROFS and to study their score function, accuracy function, and their relationships. Further, based on these operators, some MM operators based on PFS, called complex q-rung orthopair fuzzy MM (CQROFMM) operator, complex q-rung orthopair fuzzy weighted MM (CQROFWMM) operator, and their special cases are presented. Additionally, the multi-criteria decision making (MCDM) approach is developed by using the explored operators based on CQROFS. Finally, the advantages and comparative analysis are also discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1739
Author(s):  
Zeeshan Ali ◽  
Tahir Mahmood ◽  
Miin-Shen Yang

The theory of complex spherical fuzzy sets (CSFSs) is a mixture of two theories, i.e., complex fuzzy sets (CFSs) and spherical fuzzy sets (SFSs), to cope with uncertain and unreliable information in realistic decision-making situations. CSFSs contain three grades in the form of polar coordinates, e.g., truth, abstinence, and falsity, belonging to a unit disc in a complex plane, with a condition that the sum of squares of the real part of the truth, abstinence, and falsity grades is not exceeded by a unit interval. In this paper, we first consider some properties and their operational laws of CSFSs. Additionally, based on CSFSs, the complex spherical fuzzy Bonferroni mean (CSFBM) and complex spherical fuzzy weighted Bonferroni mean (CSFWBM) operators are proposed. The special cases of the proposed operators are also discussed. A multi-attribute decision making (MADM) problem was chosen to be resolved based on the proposed CSFBM and CSFWBM operators. We then propose the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method based on CSFSs (CSFS-TOPSIS). An application example is given to delineate the proposed methods and a close examination is undertaken. The advantages and comparative analysis of the proposed approaches are also presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tabasam Rashid ◽  
Shahzad Faizi ◽  
Sohail Zafar

Fuzzy entropy means the measurement of fuzziness in a fuzzy set and therefore plays a vital role in solving the fuzzy multicriteria decision making (MCDM) and multicriteria group decision making (MCGDM) problems. In this study, the notion of the measure of distance based entropy for uncertain information in the context of interval-valued intuitionistic fuzzy set (IVIFS) is introduced. The arithmetic and geometric average operators are firstly used to aggregate the interval-valued intuitionistic fuzzy information provided by the decision makers (DMs) or experts corresponding to each alternative, and then the fuzzy entropy of each alternative is calculated based on proposed distance measure. Several numerical examples are solved to demonstrate the application to MCDM and MCGDM problems to show the effectiveness of the proposed approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Liang ◽  
Xiaolu Zhang ◽  
Manfeng Liu

As a new extension of Pythagorean fuzzy set (also called Atanassov’s intuitionistic fuzzy set of second type), interval-valued Pythagorean fuzzy set which is parallel to Atanassov’s interval-valued intuitionistic fuzzy set has recently been developed to model imprecise and ambiguous information in practical group decision making problems. The aim of this paper is to put forward a novel decision making method for handling multiple criteria group decision making problems within interval-valued Pythagorean fuzzy environment based on interval-valued Pythagorean fuzzy numbers (IVPFNs). There are three key issues being addressed in this approach. The first is to introduce an interval-valued Pythagorean fuzzy weighted arithmetic averaging (IVPF-WAA) operator to aggregate the decision data in order to get the overall preference values of alternatives. Some desirable properties of the IVPF-WAA operator are also investigated. Based on the idea of the maximizing deviation method, the second is to establish an optimization model for determining the weights of criteria for each expert. The third is to construct a minimizing consistency optimal model to derive the weights of criteria for the group. Finally, an illustrating example is given to verify the proposed approach.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Abhishek Guleria ◽  
Rakesh Kumar Bajaj

In the present communication, a parametric (R, S)-norm information measure for the Pythagorean fuzzy set has been proposed with the proof of its validity. The monotonic behavior and maximality feature of the proposed information measure have been studied and presented. Further, an algorithm for solving the multicriteria decision-making problem with the help of the proposed information measure has been provided keeping in view of the different cases for weight criteria, when weights are unknown and other when weights are partially known. Numerical examples for each of the case have been successfully illustrated. Finally, the work has been concluded by providing the scope for future work.


Author(s):  
CAROL L. WALKER ◽  
ELBERT A. WALKER

The algebra of truth values for fuzzy sets of type-2 consists of all mappings from the unit interval into itself, with operations certain convolutions of these mappings with respect to pointwise max and min. This algebra generalizes the truth-value algebras of both type-1 and of interval-valued fuzzy sets, and has been studied rather extensively both from a theoretical and applied point of view. This paper addresses the situation when the unit interval is replaced by two finite chains. Most of the basic theory goes through, but there are several special circumstances of interest. These algebras are of interest on two counts, both as special cases of bases for fuzzy theories, and as mathematical entities per se.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Shanshan Qiu ◽  
Dan Fu ◽  
Xiaofang Deng

In recent years, interval-valued Pythagorean fuzzy number is playing a more and more important role in decision management. It is a more effective and powerful tool to handle fuzzy information in decision problems. The multicriteria decision-making theory has been widely used in solving practical problems, such as the risk assessment of financial investment, engineering and construction, medical and health care, and information security. The main purpose of this paper is to apply a new interval-valued Pythagorean fuzzy decision-making method to practice and to analyze and solve the problem of wireless communication infrastructure. In this paper, a new interval-valued Pythagorean fuzzy ranking method, extending scope of application of the VIKOR method to interval-valued Pythagorean fuzzy set, is proposed. In order to adapt to actual needs, subjective and objective weights are combined to solve decision-making problems to enhance its practicality, validity, and effectiveness. An example of wireless communication infrastructure problem is provided to illustrate the rationality of this method and verify its advantages.


Sign in / Sign up

Export Citation Format

Share Document