scholarly journals Effectual Approach for Cloud Data Center Security using Metaheuristic based Global Optimization

2018 ◽  
Vol 1 (29) ◽  
pp. 490-497
Author(s):  
L.A Abdul Rasul A. AL WAILI

Cloud Computing is emerging as one of the high performance and integrity aware area in the distributed and grid based computing environment. Enormous computing and technology based services are delivered and disseminated throughout the globe using cloud implementations because of increasing usage of technology products. As these products and devices are quite costly to purchase, cloud computing gives the option to hire the computing infrastructure with per usage base. As cloud computing is escalating by number of services, there are lots of issues regarding vulnerability and integrity in the data centers from where these cloud services are disseminated. This research manuscript presents and implements a unique and effectual approach for security of data centers using dynamic approach for encryption during communication and accessing the cloud services. The results in the projected novel approach are effective in terms of cost, complexity and overall performance. The projected novel approach is using nature inspired approach River formation dynamics Metaheuristic Approach for the enhancement of results and performance. Keywords – Cloud Computing, Cloud of Things, Nature Inspired Approach, Network Security, River formation dynamics Metaheuristic Approach

Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing combines the advantages of several computing paradigms and introduces ubiquity in the provisioning of services such as software, platform, and infrastructure. Data centers, as the main hosts of cloud computing services, accommodate thousands of high performance servers and high capacity storage units. Offloading the local resources increases the energy consumption of the transport network and the data centers although it is advantageous in terms of energy consumption of the end hosts. This chapter presents a detailed survey of the existing mechanisms that aim at designing the Internet backbone with data centers and the objective of energy-efficient delivery of the cloud services. The survey is followed by a case study where Mixed Integer Linear Programming (MILP)-based provisioning models and heuristics are used to guarantee either minimum delayed or maximum power saving cloud services where high performance data centers are assumed to be located at the core nodes of an IP-over-WDM network. The chapter is concluded by summarizing the surveyed schemes with a taxonomy including the cons and pros. The summary is followed by a discussion focusing on the research challenges and opportunities.


2019 ◽  
pp. 1360-1369
Author(s):  
Sanjay P. Ahuja ◽  
Karthika Muthiah

Cloud computing is witnessing tremendous growth at one time when climate change and reducing emissions from energy use is gaining attention. With the growth of the cloud, however, comes an increase in demand for energy. There is growing global awareness about reducing greenhouse gas emissions and healthy environments. Green computing in general aims to reduce the consumption of energy and carbon emission and also to recycle and reuse the energy usage in a beneficial and efficient way. Energy consumption is a bottleneck in internet computing technology. Green cloud computing related technology arose as an improvement to cloud computing. Cloud data centers consume inordinate amounts of energy and have significant CO2 emissions as they have a huge network of servers. Furthermore, these data centers are tightly linked to provide high performance services, outsourcing and sharing resources to multiple users through the internet. This paper gives an overview about green cloud computing and its evolution, surveys related work, discusses associated integrated green cloud architecture – Green Cloud Framework, innovations, and technologies, and highlights future work and challenges that need to be addressed to sustain an eco-friendly cloud computing environment that is poised for significant growth.


2019 ◽  
Vol 16 (9) ◽  
pp. 3989-3994
Author(s):  
Jaspreet Singh ◽  
Deepali Gupta ◽  
Neha Sharma

Nowadays, Cloud computing is developing quickly and customers are requesting more administrations and superior outcomes. In the cloud domain, load balancing has turned into an extremely intriguing and crucial research area. Numbers of algorithms were recommended to give proficient mechanism for distributing the cloud user’s requests for accessing pool cloud resources. Also load balancing in cloud should provide notable functional benefits to cloud users and at the same time should prove out to be eminent for cloud services providers. In this paper, the pre-existing load balancing techniques are explored. The paper intends to provide landscape for classification of distinct load balancing algorithms based upon the several parameters and also address performance assessment bound to various load balancing algorithms. The comparative assessment of various load balancing algorithms will helps in proposing a competent load balancing technique for intensify the performance of cloud data centers.


2021 ◽  
Vol 17 (3) ◽  
pp. 155014772199721
Author(s):  
Mueen Uddin ◽  
Mohammed Hamdi ◽  
Abdullah Alghamdi ◽  
Mesfer Alrizq ◽  
Mohammad Sulleman Memon ◽  
...  

Cloud computing is a well-known technology that provides flexible, efficient, and cost-effective information technology solutions for multinationals to offer improved and enhanced quality of business services to end-users. The cloud computing paradigm is instigated from grid and parallel computing models as it uses virtualization, server consolidation, utility computing, and other computing technologies and models for providing better information technology solutions for large-scale computational data centers. The recent intensifying computational demands from multinationals enterprises have motivated the magnification for large complicated cloud data centers to handle business, monetary, Internet, and commercial applications of different enterprises. A cloud data center encompasses thousands of millions of physical server machines arranged in racks along with network, storage, and other equipment that entails an extensive amount of power to process different processes and amenities required by business firms to run their business applications. This data center infrastructure leads to different challenges like enormous power consumption, underutilization of installed equipment especially physical server machines, CO2 emission causing global warming, and so on. In this article, we highlight the data center issues in the context of Pakistan where the data center industry is facing huge power deficits and shortcomings to fulfill the power demands to provide data and operational services to business enterprises. The research investigates these challenges and provides solutions to reduce the number of installed physical server machines and their related device equipment. In this article, we proposed server consolidation technique to increase the utilization of already existing server machines and their workloads by migrating them to virtual server machines to implement green energy-efficient cloud data centers. To achieve this objective, we also introduced a novel Virtualized Task Scheduling Algorithm to manage and properly distribute the physical server machine workloads onto virtual server machines. The results are generated from a case study performed in Pakistan where the proposed server consolidation technique and virtualized task scheduling algorithm are applied on a tier-level data center. The results obtained from the case study demonstrate that there are annual power savings of 23,600 W and overall cost savings of US$78,362. The results also highlight that the utilization ratio of already existing physical server machines has increased to 30% compared to 10%, whereas the number of server machines has reduced to 50% contributing enormously toward huge power savings.


2014 ◽  
Vol 1061-1062 ◽  
pp. 1070-1073
Author(s):  
Lei Tang ◽  
Zheng Ce Cai ◽  
Guo Long Chen ◽  
Xian Wei Li

In recent years, cloud computing has received much attention from both academia and engineering areas. With more and more companies beginning to provide cloud services, more and more data centers are being built. Recent studies show that the energy consumed by cloud data centers accounts for a large fraction of the total power consumption today. This motivates us to survey power reduction techniques in cloud data centers.


2016 ◽  
Vol 7 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Sanjay P. Ahuja ◽  
Karthika Muthiah

Cloud computing is witnessing tremendous growth at one time when climate change and reducing emissions from energy use is gaining attention. With the growth of the cloud, however, comes an increase in demand for energy. There is growing global awareness about reducing greenhouse gas emissions and healthy environments. Green computing in general aims to reduce the consumption of energy and carbon emission and also to recycle and reuse the energy usage in a beneficial and efficient way. Energy consumption is a bottleneck in internet computing technology. Green cloud computing related technology arose as an improvement to cloud computing. Cloud data centers consume inordinate amounts of energy and have significant CO2 emissions as they have a huge network of servers. Furthermore, these data centers are tightly linked to provide high performance services, outsourcing and sharing resources to multiple users through the internet. This paper gives an overview about green cloud computing and its evolution, surveys related work, discusses associated integrated green cloud architecture – Green Cloud Framework, innovations, and technologies, and highlights future work and challenges that need to be addressed to sustain an eco-friendly cloud computing environment that is poised for significant growth.


2020 ◽  
Vol 3 (2) ◽  
pp. 11-20
Author(s):  
Noora N. Bhaya ◽  
Rabah A. Ahmed

Cloud computing is a fast-growing technology used by major corporations these days because of the flexibility framework it provides to consumers. Cloud technology requires large data centers consisting of multiple IT equipment and servers. One main problem with these data centers is the vast amount of power consumed during servers operation. This reduces financial benefit and increases the need to produce more energy to cover the needs of operating the cloud infrastructure. This paper proposes an approach for managing the virtual central processing unit (vCPU) of a virtual machine to improve server power efficiency. A framework is used to study the proposed approach while processing different types of workloads widely found in most general-purpose cloud computing applications. Results indicate an improvement in server power saving.


2013 ◽  
Vol 3 (4) ◽  
pp. 13-27 ◽  
Author(s):  
Jitendra Singh ◽  
Vikas Kumar

Outage in cloud computing services is a critical issue and is primarily attributed to the single data center connectivity. To address the cloud outage, this work proposes a model for the subscription and selection of more than one data center. Selection of data center can be determined by the usage of broker at the user ends itself. Provision of broker at user's end reduces the overhead at provider's end; as a result performance of cloud data center improves. For the selection of appropriate data center, broker takes the feedback from the available data centers, and select one of them. During the selection of cloud, their status (up/down) at that particular time is also considered. In case of outage at one data center, other can be selected from the available list. Broker also facilitates the homogeneous use of cloud by allotting the load to less congested data centers. Experimental results revealed that multiple data center approach is not only helpful in countering the outage (as other data center can be selected from the broker) but also the usage cost.


2015 ◽  
pp. 266-288
Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing combines the advantages of several computing paradigms and introduces ubiquity in the provisioning of services such as software, platform, and infrastructure. Data centers, as the main hosts of cloud computing services, accommodate thousands of high performance servers and high capacity storage units. Offloading the local resources increases the energy consumption of the transport network and the data centers although it is advantageous in terms of energy consumption of the end hosts. This chapter presents a detailed survey of the existing mechanisms that aim at designing the Internet backbone with data centers and the objective of energy-efficient delivery of the cloud services. The survey is followed by a case study where Mixed Integer Linear Programming (MILP)-based provisioning models and heuristics are used to guarantee either minimum delayed or maximum power saving cloud services where high performance data centers are assumed to be located at the core nodes of an IP-over-WDM network. The chapter is concluded by summarizing the surveyed schemes with a taxonomy including the cons and pros. The summary is followed by a discussion focusing on the research challenges and opportunities.


Author(s):  
M. Murugesan

Cloud computing is able to managing a massive quantity of growing work for the use of enterprise clients in a specified way Virtualization, which makes assumptions the network resources and makes it simple to control, is an important enabling technology for cloud computing. Computing is being used in the proposed work to distribute cloud services tailored to the needs and to promote the smart grid principle. “Skewness” concept was delivered here wherein equal was reducing to combine workloads to enhance the usage of the server. The complexities of on-demand allocation of resources arise from managing customer demands. As a result, the use of vms technologies has proved to be helpful in terms of resource provisioning. The use of virtualized environments is expected to reduce primarily consist connection speed while also executing tasks in accordance with cloud resource availability. This implementation can be use local negotiation based VM consolidation mechanism to predict each job request and reduce overloads to create virtual space at the time of multiple requests. The proposed system implement co-location approach to combine unused small spaces to create new virtual space for improves the performance of server. Also implement self-destruction approach to eliminate the invalid data based on time to live property.  The proposed framework is executed in genuine time with effective asset allotment. In this system to begin with broaden a forecast show which will gauge the parcel sizes of decrease commitments at runtime. And it can detect information skewness in real time and allocate extra asses for mordant of large walls that help us complete faster.


Sign in / Sign up

Export Citation Format

Share Document