scholarly journals Advanced Glycation End-products (AGEs): An emerging concern for processed food industries

2020 ◽  
Author(s):  
Chetan Sharma

The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). Animal derived foods that are high in fat and protein are generally AGE-rich and prone to new AGE formation during cooking. Most studies on the biological effects of AGEs have been carried out by administering heated processed foods. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE).The chemistry of AGE formation and their patho-biochemistry particularly in relation to the diabetic complications as well as their relation role in the aging discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

2021 ◽  
Vol 22 (16) ◽  
pp. 8832
Author(s):  
Lucas C. Olson ◽  
Tri M. Nguyen ◽  
Rebecca L. Heise ◽  
Barbara D. Boyan ◽  
Zvi Schwartz ◽  
...  

Decellularized tissues are biocompatible materials that engraft well, but the age of their source has not been explored for clinical translation. Advanced glycation end products (AGEs) are chemical cross-links that accrue on skeletal muscle collagen in old age, stiffening the matrix and increasing inflammation. Whether decellularized biomaterials derived from aged muscle would suffer from increased AGE collagen cross-links is unknown. We characterized gastrocnemii of 1-, 2-, and 20-month-old C57BL/6J mice before and after decellularization to determine age-dependent changes to collagen stiffness and AGE cross-linking. Total and soluble collagen was measured to assess if age-dependent increases in collagen and cross-linking persisted in decellularized muscle matrix (DMM). Stiffness of aged DMM was determined using atomic force microscopy. AGE levels and the effect of an AGE cross-link breaker, ALT-711, were tested in DMM samples. Our results show that age-dependent increases in collagen amount, cross-linking, and general stiffness were observed in DMM. Notably, we measured increased AGE-specific cross-links within old muscle, and observed that old DMM retained AGE cross-links using ALT-711 to reduce AGE levels. In conclusion, deleterious age-dependent modifications to collagen are present in DMM from old muscle, implying that age matters when sourcing skeletal muscle extracellular matrix as a biomaterial.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Eunsoo Jung ◽  
Wan Seok Kang ◽  
Kyuhyung Jo ◽  
Junghyun Kim

The renal accumulation of advanced glycation end products (AGEs) is a causative factor of various renal diseases, including chronic kidney disease and diabetic nephropathy. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in renal AGE burden. This study evaluated the inhibitory effects of ethyl pyruvate (EP) on methylglyoxal- (MGO-) modified AGE cross-links with proteins in vitro. We also determined the potential activity of EP in reducing the renal AGE burden in exogenously MGO-injected rats. EP inhibited MGO-modified AGE-bovine serum albumin (BSA) cross-links to collagen (IC50=0.19±0.03 mM) in a dose-dependent manner, and its activity was stronger than aminoguanidine (IC50=35.97±0.85 mM). In addition, EP directly trapped MGO (IC50=4.41±0.08 mM) in vitro. In exogenous MGO-injected rats, EP suppressed AGE burden and MGO-induced oxidative injury in renal tissues. These activities of EP on the MGO-mediated AGEs cross-links with protein in vitro and in vivo showed its pharmacological potential for inhibiting AGE-induced renal diseases.


2001 ◽  
Vol 359 (3) ◽  
pp. 567-574 ◽  
Author(s):  
Karel OTERO ◽  
Fernando MARTÍNEZ ◽  
Amada BELTRÁN ◽  
Deyarina GONZÁLEZ ◽  
Beatriz HERRERA ◽  
...  

Endothelial cell (EC) junctions regulate in large part the integrity and barrier function of the vascular endothelium. Advanced glycation end-products (AGEs), the irreversibly formed reactive derivatives of non-enzymic glucose–protein condensation reactions, are strongly implicated in endothelial dysfunction that distinguishes diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether AGEs affect EC lateral junction proteins, with particular regard to the vascular endothelial cadherin (VE-cadherin) complex. Our results indicate that AGE-modified BSA (AGE-BSA), a prototype of advanced glycated proteins, disrupts the VE-cadherin complex when administered to ECs. AGE-BSA, but not unmodified BSA, was found to induce decreases in the levels of VE-cadherin, β-catenin and γ-catenin in the complex and in total cell extracts, as well as a marked reduction in the amount of VE-cadherin present at the cell surface. In contrast, the level of platelet endothelial cell adhesion molecule-1 (PECAM-1), which is located at lateral junctions, was not altered. Supplementation of the cellular antioxidative defences abolished these effects. Finally, the loss of components of the VE-cadherin complex was correlated with increases in vascular permeability and in EC migration. These findings suggest that some of the AGE-induced biological effects on the endothelium could be mediated, at least in part, by the weakening of intercellular contacts caused by decreases in the amount of VE-cadherin present.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Roberta Sanguineti ◽  
Alessandra Puddu ◽  
François Mach ◽  
Fabrizio Montecucco ◽  
Giorgio Luciano Viviani

Osteoporosis is a major public health burden that is expected to further increase as the global population ages. In the last twenty years, advanced glycation end products (AGEs) have been shown to be critical mediators both in the pathogenesis and development of osteoporosis and other chronic degenerative diseases related to aging. The accumulation of AGEs within the bone induces the formation of covalent cross-links with collagen and other bone proteins which affects the mechanical properties of tissue and disturbs bone remodelling and deterioration, underlying osteoporosis. On the other hand, the gradual deterioration of the immune system during aging (defined as immunosenescence) is also characterized by the generation of a high level of oxidants and AGEs. The synthesis and accumulation of AGEs (both localized within the bone or in the systemic circulation) might trigger a vicious circle (in which inflammation and aging merged in the word “Inflammaging”) which can establish and sustain the development of osteoporosis. This narrative review will update the molecular mechanisms/pathways by which AGEs induce the functional and structural bone impairment typical of osteoporosis.


2015 ◽  
Vol 4 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Hervé Pageon ◽  
Hélène Zucchi ◽  
Zhenyu Dai ◽  
David R. Sell ◽  
Christopher M. Strauch ◽  
...  

2005 ◽  
Vol 1043 (1) ◽  
pp. 104-110 ◽  
Author(s):  
FUMITAKA HAYASE ◽  
TERUYUKI USUI ◽  
KAZUYUKI NISHIYAMA ◽  
SHIGEYUKI SASAKI ◽  
YOSHINOBU SHIRAHASHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document