scholarly journals Advanced Glycation End Products Are Retained in Decellularized Muscle Matrix Derived from Aged Skeletal Muscle

2021 ◽  
Vol 22 (16) ◽  
pp. 8832
Author(s):  
Lucas C. Olson ◽  
Tri M. Nguyen ◽  
Rebecca L. Heise ◽  
Barbara D. Boyan ◽  
Zvi Schwartz ◽  
...  

Decellularized tissues are biocompatible materials that engraft well, but the age of their source has not been explored for clinical translation. Advanced glycation end products (AGEs) are chemical cross-links that accrue on skeletal muscle collagen in old age, stiffening the matrix and increasing inflammation. Whether decellularized biomaterials derived from aged muscle would suffer from increased AGE collagen cross-links is unknown. We characterized gastrocnemii of 1-, 2-, and 20-month-old C57BL/6J mice before and after decellularization to determine age-dependent changes to collagen stiffness and AGE cross-linking. Total and soluble collagen was measured to assess if age-dependent increases in collagen and cross-linking persisted in decellularized muscle matrix (DMM). Stiffness of aged DMM was determined using atomic force microscopy. AGE levels and the effect of an AGE cross-link breaker, ALT-711, were tested in DMM samples. Our results show that age-dependent increases in collagen amount, cross-linking, and general stiffness were observed in DMM. Notably, we measured increased AGE-specific cross-links within old muscle, and observed that old DMM retained AGE cross-links using ALT-711 to reduce AGE levels. In conclusion, deleterious age-dependent modifications to collagen are present in DMM from old muscle, implying that age matters when sourcing skeletal muscle extracellular matrix as a biomaterial.

2020 ◽  
Author(s):  
Chetan Sharma

The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). Animal derived foods that are high in fat and protein are generally AGE-rich and prone to new AGE formation during cooking. Most studies on the biological effects of AGEs have been carried out by administering heated processed foods. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE).The chemistry of AGE formation and their patho-biochemistry particularly in relation to the diabetic complications as well as their relation role in the aging discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.


2021 ◽  
Vol 8 (11) ◽  
pp. 168
Author(s):  
Lucas C. Olson ◽  
James T. Redden ◽  
Zvi Schwartz ◽  
David J. Cohen ◽  
Michael J. McClure

Advanced age causes skeletal muscle to undergo deleterious changes including muscle atrophy, fast-to-slow muscle fiber transition, and an increase in collagenous material that culminates in the age-dependent muscle wasting disease known as sarcopenia. Advanced glycation end-products (AGEs) non-enzymatically accumulate on the muscular collagens in old age via the Maillard reaction, potentiating the accumulation of intramuscular collagen and stiffening the microenvironment through collagen cross-linking. This review contextualizes known aspects of skeletal muscle extracellular matrix (ECM) aging, especially the role of collagens and AGE cross-linking, and underpins the motor nerve’s role in this aging process. Specific directions for future research are also discussed, with the understudied role of AGEs in skeletal muscle aging highlighted. Despite more than a half century of research, the role that intramuscular collagen aggregation and cross-linking plays in sarcopenia is well accepted yet not well integrated with current knowledge of AGE’s effects on muscle physiology. Furthermore, the possible impact that motor nerve aging has on intramuscular cross-linking and muscular AGE levels is posited.


2007 ◽  
Vol 103 (6) ◽  
pp. 2068-2076 ◽  
Author(s):  
Jacob M. Haus ◽  
John A. Carrithers ◽  
Scott W. Trappe ◽  
Todd A. Trappe

We examined intramuscular endomysial collagen, cross-linking, and advanced glycation end products, as well as the general and contractile protein concentration of 20 young (25 ± 3 yr) and 22 old (78 ± 6 yr, range: 70–93 yr) sedentary men and women to better understand the underlying basis of changes in skeletal muscle mass and function that occur with aging. The old individuals had an impaired ability (increased time) ( P < 0.05) to climb stairs (80%), rise from a chair (56%), and walk (44%), as well as lower ( P < 0.05) quadriceps muscle volume (−29%), muscle strength (−35%), muscle power (−48%), and strength (−17%) and power (−33%) normalized to muscle size. Vastus lateralis muscle biopsies revealed that intramuscular endomysial collagen (young: 9.6 ± 1.1, old: 10.2 ± 1.2 μg/mg muscle wet wt) and collagen cross-linking (hydroxylysylpyridinoline) (young: 395 ± 65, old: 351 ± 45 mmol hydroxylysylpyridinoline/mol collagen) were unchanged ( P > 0.05) with aging. The advanced glycation end product, pentosidine, was increased ( P < 0.05) by ∼200% (young: 5.2 ± 1.3, old: 15.9 ± 4.5 mmol pentosidine/mol collagen) with aging. While myofibrillar protein concentration was lower (−5%, P < 0.05), the concentration of the main contractile proteins myosin and actin were unchanged ( P > 0.05) with aging. These data suggest that the synthesis and degradation of proteins responsible for the generation (myosin and actin) and transfer (collagen and pyridinoline cross-links) of muscle force are tightly regulated in aging muscle. Glycation-related cross-linking of intramuscular connective tissue may contribute to altered muscle force transmission and muscle function with healthy aging.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119587 ◽  
Author(s):  
Raffaella Mastrocola ◽  
Massimo Collino ◽  
Debora Nigro ◽  
Fausto Chiazza ◽  
Giuseppe D’Antona ◽  
...  

2020 ◽  
Vol 176 ◽  
pp. 332-340
Author(s):  
Tatsuro Egawa ◽  
Kohei Kido ◽  
Takumi Yokokawa ◽  
Mami Fujibayashi ◽  
Katsumasa Goto ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Eunsoo Jung ◽  
Wan Seok Kang ◽  
Kyuhyung Jo ◽  
Junghyun Kim

The renal accumulation of advanced glycation end products (AGEs) is a causative factor of various renal diseases, including chronic kidney disease and diabetic nephropathy. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in renal AGE burden. This study evaluated the inhibitory effects of ethyl pyruvate (EP) on methylglyoxal- (MGO-) modified AGE cross-links with proteins in vitro. We also determined the potential activity of EP in reducing the renal AGE burden in exogenously MGO-injected rats. EP inhibited MGO-modified AGE-bovine serum albumin (BSA) cross-links to collagen (IC50=0.19±0.03 mM) in a dose-dependent manner, and its activity was stronger than aminoguanidine (IC50=35.97±0.85 mM). In addition, EP directly trapped MGO (IC50=4.41±0.08 mM) in vitro. In exogenous MGO-injected rats, EP suppressed AGE burden and MGO-induced oxidative injury in renal tissues. These activities of EP on the MGO-mediated AGEs cross-links with protein in vitro and in vivo showed its pharmacological potential for inhibiting AGE-induced renal diseases.


2008 ◽  
Vol 283 (52) ◽  
pp. 36088-36099 ◽  
Author(s):  
Angela Cassese ◽  
Iolanda Esposito ◽  
Francesca Fiory ◽  
Alessia P. M. Barbagallo ◽  
Flora Paturzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document