scholarly journals Multi Soil Layering (MSL) System for Treatment of Noodle Industry Wastewater

2020 ◽  
Author(s):  
Syukrya Ningsih

Multi-soil-layering (MSL) systems consist of soil mixture layers (SML) such as charcoal, sawdust, iron scraps, volcanic soil with composition (10:10:5:75) and permeable zeolite layers (PL) were constructed in 50 cm (width) × 15 cm (depth) × 50 cm (height) an acrylic box like the brick pattern for removal of phosphate, nitrite, nitrate, oil and grease from noodle industry wastewater. The variations of the wastewater flow rate in the system were 10, 20, 40, and 80 mL min-1 with two processes aeration and non-aeration conditions were evaluated. The results revealed that the aeration assists the removal efficiency of phosphate, nitrite, nitrate, oil and grease on MSL system at flow rate 10 mLmin-1 were 99.43%, 83.65%, 79.43% and 100%, respectively

Jurnal Dampak ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Tivany Edwin ◽  
Shinta Indah ◽  
Denny Helard

ABSTRAKMetode Multi Soil Layering (MSL) diujicobakan untuk menyisihkan minyak dan lemak pada limbah cair hotel yang berasal dari dapur dan laundry. Hasil analisis karakteristik limbah cair tersebut menunjukkan bahwa konsentrasi minyak dan lemak melebihi baku mutu Surat Keputusan Gubernur Sumatera Barat Nomor 26 Tahun 2001 tentang Baku Mutu Limbah Cair Bagi Kegiatan Hotel di Propinsi Sumatera Barat. Pada penelitian ini digunakan 2 buah reaktor berbahan akrilik dengan dimensi 50 x 15 x 100 cm, terdiri dari dua macam lapisan batuan kerikil berdiameter 3-5 mm serta lapisan yang terdiri dari campuran tanah dan material organik. Kedua reaktor dibedakan atas material organik, dimana reaktor 1 terdiri dari campuran tanah andisol dan arang, sedangkan reaktor 2 terdiri dari campuran tanah andisol dengan serbuk gergaji. Limbah cair dialirkan pada Hydraulic Loading Rate (HLR) dengan variasi 500, 750, dan 1.000 l/m2hari. Hasil penelitian menunjukkan bahwa kedua reaktor mampu menyisihkan minyak lemak dengan efisiensi 27,8 -89,5 % pada reaktor 1, serta efisiensi 23,8-62,5% pada reaktor 2. Variasi material organik dalam campuran tanah berpengaruh pada efisiensi penyisihan konsentrasi minyak dan lemak, dimana secara keseluruhan reaktor 1 lebih baik dalam menyisihkan minyak dan lemak dibandingkan reaktor 2. Efisiensi penyisihan minyak lemak didapatkan lebih tinggi pada reaktor 1 dengan pengaliran limbah cair pada HLR 500 l/m2hari. Secara umum MSL dapat menyisihkan minyak dan lemak pada limbah cair hotel.Kata Kunci : MSL, limbah cair hotel, minyak dan lemakABSTRACTMulti soil layering (MSL) method was tested to remove oil and grease in a hotel laundry and kitchen waste water which was exceeded water quality standard on hotel wastewater quality standard issued by West Sumatera Governor Number 26 Year 2001. There were two acrylic reactors utilized in this research with dimension of 50 x 15 x 100 cm. Each reactor aws arranged with layers of 3-5mm diameters gravels and soil and organic materials mixtures, organic material used were different in each reactor. Reactor 1 used charcoal as organic material in soil mixture, while reactor 2 used sawdust. Waste water was set to flow at 500, 750, and 1.000 l/m2day Hydraulic Loading Rate (HLR). The results showed that both reactors were able to remove oil and grease with efficiency range of 22.8,-89.5% by usnig Reactor 1, and 23.8-62.5% by using Reactor 2. The difference in organic material on soil mixture affected the removal efficiency which was higher in Reactor 1. Removal efficiency of oil and grease the highest at HLR of 500 l/m2day compared to other rates. Generally, MSL is able to remove oil and grease from hotel waste water. Keywords: MSL, hotel waste water, oil and grease


Jurnal BiBieT ◽  
2017 ◽  
Vol 2 (2) ◽  
pp. 49
Author(s):  
Welly Herman ◽  
Darmawan Darmawan ◽  
Gusnidar Gusnidar

<p><em>The research aimed to make Volcanic soil of Multiple Soil Layering (MSL) with different Hydraulic Loading Rate (HLR) on the purification of polluted irrigation water and to determine the appropriate HLR against purification of polluted irrigation water. The research used an MSL system of the same Soil Mixture Block (SMB) size from a study done by </em><em>(Chen et al., 2007)</em><em> arranged in an Acrylic box measuring 50 cm x 10 cm x 60 cm (PxLxT). Making SMB is done by mixing volcanic soil, sawdust, iron, charcoal that has been mashed by 50 mesh sieve, with a combination of 7: 1: 1: 1. The MSL system is supplied with irrigation water taken from the Gunuang Nago irrigation and Pasar Baru area, Cupak Tangah village, Pauh IX sub-district, Padang continuously with different HLR of 250 L/m<sup>2</sup>/day,     500 L/m<sup>2</sup>/ day and 1000 L/m<sup>2</sup>/day. From the result of this research, it is found that MSL system can decrease pollutant content in polluted irrigation water until the concentration below the water quality standard based on PP. 82 of 2001 and MSL system with HLR 250 L/m<sup>2</sup>/day have high ability in purifying BOD and COD and HLR 1000 L/m<sup>2</sup>/day has a high ability in purifying NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> on polluted irrigation water.</em></p><p class="jbd-alamat"> </p><p class="jbd-alamat">Tujuan penelitian ini adalah untuk menentukan pengaruh tanah vulkanik dalam sistem <em>Multiple Soil Layering</em> (MSL) dengan <em>Hydraulic Loading Rate</em> (HLR) yang berbeda terhadap pemurnian air irigasi terpolusi. Penelitian  menggunakan sistem MSL dengan ukuran <em>Soil Mixture Block</em> (SMB) yang sama dari penelitian yang telah dilakukan (Chen, Sato, Wakatsuki, &amp; Masunaga, 2007)yang disusun di dalam kotak Acrylic berukuran 50 cm x 10 cm x 60 cm (PxLxT).  <em>Soil Mixture Block</em> terdiri dari tanah vulkanik, serbuk gergaji, besi, arang yang telah dihaluskan oleh ayakan 50 mesh, dengan perbandingan kombinasi 7:1:1:1.  Sistem MSL dialirkan air irigasi yang diambil dari irigasi Gunuang Nago dan Kawasan Pasar Baru, Kelurahan Cupak Tangah, Kecamatan Pauh IX, Padang secara terus menerus dengan HLR yang berbeda yaitu 250 L/m<sup>2</sup>/hari,  500 L/m<sup>2</sup>/hari dan 1000 L/m<sup>2</sup>/hari. Dari hasil penelitian diperoleh bahwa sistem MSL mampu menurunkan kandungan zat pencemar pada air irigasi terpolusi  mencapai kosentrasi di bawah baku mutu air berdasarkan PP No. 82 tahun 2001 dengan HLR 250 L/m<sup>2</sup>/hari mempunyai kemampuan yang tinggi dalam memurnikan kadar pencemar BOD dan COD sedangkan HLR 1000 L/m2/hari mempunyai kemampuan yang tinggi dalam memurnikan kadar pencemar NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup> dan NO<sub>3</sub><sup>-</sup> pada air irigasi terpolusi.</p>


Jurnal Dampak ◽  
2012 ◽  
Vol 9 (2) ◽  
pp. 98
Author(s):  
Shinta Elystia ◽  
Shinta Indah ◽  
Denny Helard

ABSTRAKDalam penelitian dilakukan pengolahan limbah cair Hotel yang bersumber dari dapur dan laundri dengan metode Multi Soil Layering (MSL). Tujuan penelitian ini untuk menentukan efisiensi penyisihan COD dan mempelajari pengaruh faktor variasi material organik dalam campuran tanah pada lapisan anaerob dan variasi Hydraulic Loading Rate (HLR) terhadap efisiensi pengolahan limbah cair hotel dengan metode MSL. Dua buah reaktor MSL berdimensi 50 x 15 x 100 cm dengan lapisan batuan yang sama pada kedua reaktor berupa kerikil berukuran 35 mm serta lapisan anaerob berupa campuran tanah dengan arang (reaktor 1) dan campuran tanah dengan serbuk gergaji (reaktor 2) dengan rasio komposisi 2 : 1. Limbah dialirkan pada masing-masing reaktor dengan variasi HLR 500, 750, dan 1.000 l/m2hari. Konsentrasi COD sebelum diolah adalah 132,600201,240 mg/l, setelah diolah dengan MSL konsentrasi berubah menjadi 12,48088,920 mg/l. Secara umum, variasi material organik dalam campuran tanah tidak begitu berpengaruh pada penyisihan COD. Variasi HLR cukup berpengaruh, dimana HLR 500 l/m2hari memberikan efisiensi penyisihan COD yang lebih tinggi. Efisiensi penyisihan COD yang diperoleh pada penelitian ini berturut-turut pada reactor 1 berkisar antara 55 -90 % dan pada reactor 2 berkisar antara 56-89%. Hasil menunjukkan bahwa kedua reaktor mampu menyisihkan COD pada limbah cair hotel.Kata Kunci: COD, limbah cair hotel, multi soil layering (MSL)ABSTRACTResearch COD removal from hotel wastewater stemmed from laundry and kitchen with Multi Soil Layering method (MSL) was conducted. The aim were to observe COD removal efficiency and to study the effect of organic material variation in soil as the anaerob layer as well as the effect of various hydraulic loading rate (HLR). In this research, there were two MSL reactors with dimension of 50 x 15 x 100 cm. Aerob layers of both reactors in the form of gravel 3-5 mm sized while anaerob layers are composed from soil mixed with charcoal (reactor 1) and soil mixed with sawdust (reactor 2) with ratio 2:1. HLR of wastewater for each reactor are 500, 750, and 1.000 l/m2day. Concentration of COD was 132,600-201,240 mg/l. COD concentration successively reduced to 12,480-88,920 mg/l.This result indicated both reactors can cast aside COD and also neutralize hotel liquid waste pH. In general, organic material variation of in soil mixture, that is sawdust and charcoal did not show any significant influence. HLR of 500 l / m2/day allowed the best removal efficiency at each contaminant parameters. As a whole efficiency removal of COD at this research successively at reactor 1 ranged from 55-90%, and 56-89%.Key Words:COD, hotel wastewater, multi soil layering (MSL)


2003 ◽  
Vol 3 (5-6) ◽  
pp. 67-72
Author(s):  
S. Takizawa ◽  
T. Win

In order to evaluate effects of operational parameters on the removal efficiency of trichloroethylene and 1,1,1-trichloroethene from water, lab-scale experiments were conducted using a novel hollow-fibre gaspermeable membrane system, which has a very thin gas-permeable membrane held between microporous support membranes. The permeation rate of chlorinated hydrocarbons increased at higher temperature and water flow rate. On the other hand, the effects of the operational conditions in the permeate side were complex. When the permeate side was kept at low pressure without sweeping air (pervaporation), the removal efficiency of chlorinated hydrocarbon, as well as water permeation rate, was low probably due to lower level of membrane swelling on the permeate side. But when a very small amount of air was swept on the membrane (air perstripping) under a low pressure, it showed a higher efficiency than in any other conditions. Three factors affecting the permeation rate are: 1) reduction of diffusional boundary layer within the microporous support membrane, 2) air/vapour flow regime and short cutting, and 3) the extent of membrane swelling on the permeate side. A higher air flow, in general, reduces the diffusional boundary layer, but at the same time disrupts the flow regime, causes short cutting, and makes the membrane dryer. Due to these multiple effects on gas permeation, there is an optimum operational condition concerning the vacuum pressure and the air flow rate. Under the optimum operational condition, the residence time within the hollow-fibre membrane to achieve 99% removal of TCE was 5.25 minutes. The log (removal rate) was linearly correlated with the average hydraulic residence time within the membrane, and 1 mg/L of TCE can be reduced to 1 μg/L (99.9% removal).


2009 ◽  
Vol 9 (4) ◽  
pp. 469-475
Author(s):  
T. Turtiainen

Radon is one of the contaminants that sometimes impair the water quality of wells, especially those drilled in bedrock. Domestic radon removal units based on aeration have been commercially available for more than ten years. In order to determine how effectively these units remove radon a new test protocol applying frequent sampling while letting 100 litres of water flow, was developed. This way, removal efficiencies can be more accurately calculated and possible malfunctions detected. Seven models of domestic aerators designed for removing radon from household water were tested. The aerators were based on diffused bubble aeration, spray aeration or jet aeration. The average removal efficiencies for 100 litres with a medium flow rate were 86–100% except for a unit that circulated the aerated water back to the well that had removal efficiency of 80% at the maximum. By conducting a questionnaire study usual problems related to the aeration units were localized and recommendations on maintenance and installation are given accordingly.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


2012 ◽  
Vol 610-613 ◽  
pp. 2000-2005
Author(s):  
Chun Yan Xu ◽  
Hong Jun Han

The uncertainty of operating parameters hinders the practical application of the biological desulfurization. To solve this problem, this study which was conducted in room temperature, pH around seven conditions, investigated the effects of the operating parameters on the hydrogen sulfide (H2S) removal performance in the biotrickling filter, including inlet H2S concentration, inlet flow rate or gas retention time, inlet volume load and circulating liquid spraying flux. The results showed that, the inlet H2S concentration should be controlled within 800mg/m3, 650mg/m3, 400mg/m3, 300mg/m3 respectively while the inlet flow rate was 150L/h, 200L/h, 250L/h, 300L/h, at those conditions, the outlet H2S concentrations were lower than 8mg/m3 and the H2S removal efficiencies were more than 98%. The optimum gas retention time was 12.37s, corresponding to the inlet flow rate of 200L/h, at this time, even if the inlet H2S concentration as high as 700mg/m3, the removal efficiency could be still more than 98%, the outlet concentration of H2S was only 13.1mg/m3. The maximum inlet volume load was 130g/(m3•h), in this condition, the outlet concentration of H2S could be controlled below 12mg/m3, the removal efficiency could above 98.4%.


2019 ◽  
Vol 12 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Fatin Abdul_kareem Ashoor ◽  
Amer D. Zmat ◽  
Muthanna H. AlDahhan

A lab scale pellet reactor (PR) was designed and fabricated to carry out extensive investigations on the removal efficiency of the hardness of groundwater.  The groundwater of 2200 – 2600 mg/L hardness was collected from Abdulla Ibnalhassan wells area located at the west desert of Al-Shinafiyah district (70 km to the southwest of Al-Dewaniyah city, Iraq). Both hydrodynamic parameters of the pellet reactor (porosity and fluidized bed height) and the parameters of calcium carbonate crystallization process (calcium carbonate equilibrium, pellet size, and density) were modeled and compared with the experimental results of the lab scale pellet reactor. The comparison showed that fair agreement between modeled and measured results was observed. The removal efficiency of both calcium and magnesium ions were 62.5-99% and 83-99% respectively. The removal efficiency was found to be strongly dependent on pH and the ratio of NaOH solution flow rate to the groundwater flow rate in the pellet reactor.


2019 ◽  
Vol 2 (5) ◽  
pp. 153-160
Author(s):  
Huy Huu Duong ◽  
Vui Thi Kim Tran ◽  
Chuong Thanh Nguyen ◽  
Hien Thi To

In the carbonyl sampling of 2, 4- dinitrophenylhydrazine (DNPH) impregnated cartridge, the ozone removal was necessary because ozone reacted with the DNPH derivatives. A commercial ozone scrubber was usually used to remove O3. However, high humidity leaded to carbonyl compounds being trapped on the ozone scrubber before passing through the DNPH cartridge. The purpose of this study was to assess the ozone removal by KI-denuder under the climatic conditions of Ho Chi Minh City. Several parameters including air sampling flow rate and denuder length were optimized to achieve the highest removal efficiency. The optimum parameters of the KI denuder were the sampling flow rate of less than 1 L/min, and the denuder length of 20 cm. The effect of the initial O3 concentration on the removal efficiency was also investigated. Finally, the ozone removal efficiency of KI-denuder was compared to that of ozone scrubber when two devices were applied for the carbonyl sampling during field measurement. The results show that KI-denuder could be used to replace the ozone scrubber with high removal efficiency, particularly in high humidity condition. In conclusion, KI-denuder was effective, simple, easy to use and cheap. Therefore, it was encouraged to use in carbonyl sampling.


Sign in / Sign up

Export Citation Format

Share Document