scholarly journals EFFECT/BEHAVIOUR OF BLACK CURRANT LEAF ASH ON THE STRENGHT OF CONCRETE WITH RESPECT TO A CONTROL MIXES STRENGHT.

2019 ◽  
Author(s):  
Mala Babagana Gutti ◽  
Ani Abdulfatah Musa

The use of waste materials with pozzolanic products in concrete production is becoming a worldwide practice. The assessment of the pozzolanic activity of cement replacement materials is becoming increasingly important because of the need for more sustainable cementing products. In this report, black currant leaf ash is used as partial replacement of 5% of the concrete material. The Strength and durability test were carried out in order to assess the feasibility of using black currant leaf ash as partial replacement of cement in concrete. A total of 18 concrete cubes of 150mm x 150mm x 150mm in size were produced with ordinary Portland cement, 9 concrete cubes as control mix and 9 concrete cubes of black currant blended cement concrete, the samples were tested, weighed, and crushed to obtain their compressive strength after curing in water at age 7, 14 and 21 days. The after the study was completed it was found that the strength of the concrete increase as the samples with replacement were almost the same in strength as the control, Therefore, ordinary Portland cement-black currant blended cement concrete could be used in civil engineering and building works, especially where early strength is not a major requirement, thereby reducing the cost of production.

Author(s):  
Senthamilselvi P ◽  
Amrish A ◽  
K.S. Aravind ◽  
Elansezhiyan S ◽  
Jeyashri A

The waste generated from the industries motive environmental issues. For this reason the reuse of these wastes are often emphasised.Thus Marble dust powder (MDP) is one of the fast growing waste material which can be used in the concrete production industry to minimize material use and produce financial advantage. In this study, the marble dust powder passing through 90 micron sieve, has been utilized for determining the hardened properties of concrete .The hardened properties of concrete has been determined with the effect of different rate replacement of cement by MDP.In this examination work, MDP has replaced the Ordinary Portland Cement (OPC) at an increasing rate from 0 % to 20% by weight in M30 grade concrete. The motivation behind this investigation is to examine the behavior of concrete with the substitution of cement by MDP in various extents in concrete.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 241
Author(s):  
Kiran Kumar ◽  
Vineetha Anil ◽  
Sara Hamed ◽  
Ruwa Malik

The reason of this attempt was to demonstrate that seashells can be utilized as a partial replacement for fine aggregate in concrete for enhancing strength properties. Since seashells are widely available everywhere in coastal and seashore areas, and some of the concrete materials cannot be found easily everywhere.  The strategies utilized as a part of this attempt was to replace burnt and crushed seashells with fine aggregate at 10%, 20% and 30% and compare it with each other and the traditional Ordinary Portland Cement concrete regarding mechanical properties following 7 and 28 days. In conclusion, despite the fact that seashells are generally accessible and can be effortlessly gathered from seashore and beach front regions, the process of burning and crushing requires a lot of energy and is tedious. In spite of the fact that the results demonstrated that utilizing 20% seashell to fine aggregate substitution has a somewhat higher in compressive and flexural properties than that of Ordinary Portland Cement concrete.


2014 ◽  
Vol 803 ◽  
pp. 11-15
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Roshazita Che Amat ◽  
Taksiah Abdul Majid ◽  
Nur Liza Rahim ◽  
...  

The depletion of natural resources in the production of coarse aggregate are very crucial. Construction materials are solely depends on natural granite in the making of cement composite. Therefore , there is an urgency need to develop new alternatives material that can replace the usage of granite in concrete production. In this study, LBA have been produced to cater this problem. It is made from a mixture of bubbles from foam and ordinary portland cement. The ratio of the raw materials used is 1 part of bubbles and 2 part of ordinary Portland cement. Its manufacturing process does not involving any sintering process so it will part help to reduce energy comsuption at about 30%. The properties and characteristics of the LBA such as density, specific gravity, water absorption, strength were investigated. Results shown that the specific gravity of LBA was 1.00, water absorption was 19.44%, dry bulk density was between 730 – 800 kg/m3 and dry loose bulk density was ranged from 700 to 730 kg/m3 and the strength of aggregates is 14.00 MPa. It is found that the LBA can be used as a partial replacement of granite in the production of concrete. Keywords: LBA, concrete, density


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Mohamed S. Moawad ◽  
Shimaa Younis ◽  
Abd EL- Rahman Ragab

AbstractDifferent additional cementitious materials can be used to partially replace cement in concrete. these are used in concrete as a partial replacement for cement to reduce the effect of environmental pollution, which can lead to serious health issues. Therefore, it is critical to use locally available pozzolanic materials as a partially replacement for cement because these materials are less expensive than Portland cement and are more environmentally friendly without sacrificing concrete quality. Pozzolana made from basalt natural material was tested for the best amount of weight percentage replacement as a blinding component in cements in this study. Various percentage of basalt as a partial replacement weight percentage of ordinary Portland cement by 7.5%, 15%, and 22.5% is carried out. effect of basalt on workability, setting time, compressive strength, modulus of elasticity, tensile strength, flexural strength, and water absorption were conducted. The parameters were studied and monitored by tested a fresh and hardened concrete samples at ages of 7 days, 28 days, 56 days, and 90 days. Based on the test results, it is concluded that the optimal content of basalt as replacement of ordinary Portland cement in concrete mix is 15%.


Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the


Author(s):  
M. Preethi ◽  
Md. Hamraj ◽  
Ashveen Kumar

The present study focuses on the preparation of M30 grade concrete by replacing fine aggregate with 0%,5%,10%,15%,20%,25% of vermiculite and cement with 0% and 10% of constant silica fume to improve the performance of concrete. Via experimentation, the impact of acid exposure on concrete strength and weight is investigated in the current report. Concrete cubes of different mixes(12no.’s) are casted and exposed to Sulphuric acid of (pH=3). Cubes with dimensions of 100mm x 100mm x 100mm are cast with M30 concrete and then immersed (cured) in water for 28 days. The cubes are then soaked in 4 percent concentrated Sulphuric acid for 7 days. The compressive strength of the cured cubes is then measured using a compressive measuring machine.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


Sign in / Sign up

Export Citation Format

Share Document