scholarly journals On the Identical Simulation of the Entire Universe

2016 ◽  
Author(s):  
Mesut Kavak

A time ago, I published an article about deceleration of the universe. It was especially based on uncertainty, and it explains how does matter work. In this work, it was performed some analysis of the some specific subjects as an approach such as deceleration, uncertainty, possible particle formation, black hole, gravitation, energy, mass and light speed as the elements for identical simulation computations of the entire universe as the most sensitive as possible being related that article. There are some information about escaping from black holes, event horizon lengths, viscosity of free space, re-derivation of Planck constants and infrastructure of some basic laws of existence mathematically as matter is directly dependent of geometric rules. Also, some elements were given for the readers to solve some required constants as the most sensitive manner. As the constants are not enough in the name of engineering, also finally I found a working algorithm out which reduces process number of the power series to process number of the quadratic equations like calculating a root of an integer as an irrational number by solving equation; so also it can be used to calculate trigonometric values in the best manner for simulations of the entire universe besides physical constants as irrational values.

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Cosimo Bambi

Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations.


2016 ◽  
Vol 94 (10) ◽  
pp. 960-966
Author(s):  
Shripad P. Mahulikar ◽  
Pallavi Rastogi

The area of the event horizon of a black hole (Aeh) is so far linked only with its entropy (SBH). In this theoretical investigation, it is shown that relating Aeh only to SBH is inadequate, because Aeh is linked to the black hole’s negentropy, which encompasses its entropy. Increasing Aeh of black holes that grow now follows from the negentropy theorem (NET) and also from the well-known area theorem. The decreasing Aeh of black holes that decay follows from the converse to NET and is not a violation of the area theorem. The corollary to NET is proved for the case when two dissipative structures merge, which is the basis for the coalescence of black holes. The converse of corollary to NET explains negentropy loss due to splitting of a dissipative structure. When applied to black hole explosion (i.e., splitting into an infinite number of parts), converse of corollary to NET reduces to converse of NET. The entropy/energy ratio of the exported Hawking radiance from black holes contributes to the entropy increase of the universe. These aspects justify the consideration of black holes as thermodynamic dissipative structures.


Author(s):  
Katherine Blundell

A black hole is a region of space where the force of gravity is so strong that nothing, not even light, can travel fast enough to escape from its interior. ‘What is a black hole?’ outlines how they were first conceived by theoretical physicists such as John Michell, Henry Cavendish, Pierre-Simon Laplace, and Albert Einstein, and explains the concepts of singularity, escape velocity, the event horizon, and spacetime. Black holes have now been identified in the Universe in their hundreds and accounted for in their millions. Although invisible, these objects interact with and influence their surroundings in different ways depending on proximity relative to the black hole.


Author(s):  
Charles D. Bailyn

This chapter explores some of the predicted effects of black holes on people's lives and the possibility that they might someday be explored in fact as well as in fiction. These predicted effects include the Hawking radiation, wormholes, and multiverses. The Hawking radiation—in which the interaction between quantum mechanics and relativity has been explored with some success—is a process through which black holes are expected to emit energy and ultimately evaporate. Meanwhile, one of the most enticing possible effects associated with black holes is that they might form wormholes through which widely separated parts of the Universe can be closely connected. Lastly, one final suggestion that might be contemplated is that a separate universe might exist inside the event horizon of a black hole. This is one version of the multiverse concept, in which a variety of universes with a variety of characteristics exist.


2021 ◽  
Vol 1 (54) ◽  
pp. 80-88
Author(s):  
Leonid A. SOSNOVSKIY ◽  
◽  
Sergei S. SHERBAKOV ◽  

In the work [7], the classical concepts of thermodynamic entropy are systematized and modern approaches to assessing the tribo-fatigue and mechanothermodynamic entropy of non-additive systems are outlined. In this article, the concept of the analogy of thermodynamics and mechanics of black holes is presented and analyzed, which made it possible to estimate their (thermodynamic) entropy. The insufficiency of this concept is that thermodynamic entropy is a characteristic of energy dissipation, whereas black holes are characterized by the absorption of energy and matter. In this regard, it is proposed to consider the event horizon as a hermodynamic medium, and a black hole as a tribo-fatigue object. And then the “black hole — event horizon” system is presented as a combined mechanothermodynamic non-additive multisystem. Methods for estimating the total (mechanothermodynamic) entropy and its components — tribo-fatigue and thermodynamic entropy in black hole mechanics are presented. With regard to individual (specific) zones and objects of the universe, the well-known theory of Zeldovich is accordingly modified: the universe is a thermodynamic medium with discretely distributed (scattered) dense and/or solid bodies (objects) — stars, galaxies, etc. Behavior of such a system (direct and back effects in the universe) are described. The peculiarity of the action of the medium on the stars and, conversely, the action of the cluster of stars on the interaction between them consists in the fact that it is non-Newtonian: action is not equal to reaction. It is the inequality of action against counteraction, which has radically different mechanisms and consequences (results), or, in other words, the imbalance of the universe that determine its general motion in space–time. The changing set of all states is the evolution of the universe. The analysis of possible strategies for the evolution of mechanothermodynamic systems is carried out on the basis of the fundamental principle: the damageability of everything that exists has no conceivable boundaries. This principle is formulated in mechanothermodynamics and used in philosophy to create a generalized theory of the evolution of the material world.


1998 ◽  
Vol 11 (1) ◽  
pp. 28-41
Author(s):  
I.D. Novikov

Some 30 years ago very few scientists thought that black holes may really exist. Attention focussed on the black hole hypothesis after neutron stars had been discovered. It was rather surprising that astrophysicists immediately ‘welcomed’ black holes. They found their place not only in the remnants of supernova explosions but also in the nuclei of galaxies and quasars.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
David Garofalo

While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Author(s):  
Timothy Clifton

By studying objects outside our Solar System, we can observe star systems with far greater gravitational fields. ‘Extrasolar tests of gravity’ considers stars of different sizes that have undergone gravitational collapse, including white dwarfs, neutron stars, and black holes. A black hole consists of a region of space-time enclosed by a surface called an event horizon. The gravitational field of a black hole is so strong that anything that finds its way inside the event horizon can never escape. Other star systems considered are binary pulsars and triple star systems. With the invention of even more powerful telescopes, there will be more tantalizing possibilities for testing gravity in the future.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050070
Author(s):  
Ujjal Debnath

We study the four-dimensional (i) modified Bardeen black hole, (ii) modified Hayward black hole, (iii) charged regular black hole and (iv) magnetically charged regular black hole. For modified Bardeen black hole and modified Hayward black hole, we found only one horizon (event horizon) and then we found some thermodynamic quantities like the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the event horizon. We here study the bounds of the above thermodynamic quantities for these black holes on the event horizon. Then, we examine the thermodynamics stability of the black holes with some conditions. Next, we studied the charged regular black hole and magnetically charged regular black hole and found two horizons (Cauchy and event horizons) of these black holes. Then, we found the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the Cauchy and event horizons. Then, we get some conditions for thermodynamic stability/instability of the black holes. We found the radius of the extremal horizon and Christodoulou–Ruffiini mass and then analyze the above thermodynamic quantities on the extremal horizon. We calculate the sum/subtraction, product, division and sum/subtraction of inverse of surface areas, entropies, irreducible masses, temperatures, Komar energies and specific heat capacities on both the horizons. From these, we found the bounds of the above quantities on the horizons.


Sign in / Sign up

Export Citation Format

Share Document