scholarly journals Chaoslike states can be expected before and after logistic growth

2022 ◽  
Author(s):  
THEODORE MODIS

Instabilities associated with population growth can be simulated by putting the logistic growth curve in a discrete form. In contrast to the usual derivation of chaos, which can only explain instabilities at the top of the curve, this method can also account for fluctuations during the early phases of the niche-filling process. Precursors, a steep initial rise, and final instabilities can all be interrelated. Industrial examples are given of logistic growth alternating with periods of chaotic fluctuations.

1977 ◽  
Vol 34 (3) ◽  
pp. 425-428 ◽  
Author(s):  
L. L. Eberhardt

The Beverton and Holt and Ricker stock–recruitment curves can be used to generate population growth curves. The Beverton and Holt curve is then identical to a difference equation model for the logistic growth curve, and may be derived in terms of equations for linearly density-dependent population regulation. The same equations lead to the Ricker curve if the density-regulating effect is assumed to depend only on population size at the beginning of the interval between generations. At low rates of population growth, the Ricker curve approaches that of Beverton and Holt. The two curves appear to represent certain concepts known in population biology as "r and K selection."


Author(s):  
RIBAS ANTÔNIO VIDAL ◽  
FABIANE PINTO LAMEGO ◽  
MICHELÂNGELO MUZELL TREZZI ◽  
RAFAEL DE PRADO ◽  
NILDA ROMA BURGOS

Strategies to prevent herbicide weed resistance are rarely practiced by farmers. As a consequence, herbicide resistant weed biotypes (HRWB) have been increasing worldwide in the past decades. This paper aims to analyze the weed population growth curve and to propose a strategic plan for prevention and management of HRWB. The existing weed control methods are organized considering the sensitivity analysis of the population growth at each phase of the logistic growth curve. This analysis indicates that tactics directed to reduce the population growth rate are most appropriate for HRWB management, mainly at the initial phase of the resistant weed population growth. This epidemiological approach provides evidence to the importance of early detection and management of HRWB.


2018 ◽  
Author(s):  
Emanuel A. Fronhofer ◽  
Lynn Govaert ◽  
Mary I. O’Connor ◽  
Sebastian J. Schreiber ◽  
Florian Altermatt

AbstractThe logistic growth model is one of the most frequently used formalizations of density dependence affecting population growth, persistence and evolution. Ecological and evolutionary theory and applications to understand population change over time often include this model. However, the assumptions and limitations of this popular model are often not well appreciated.Here, we briefly review past use of the logistic growth model and highlight limitations by deriving population growth models from underlying consumer-resource dynamics. We show that the logistic equation likely is not applicable to many biological systems. Rather, density-regulation functions are usually non-linear and may exhibit convex or both concave and convex curvatures depending on the biology of resources and consumers. In simple cases, the dynamics can be fully described by the continuous-time Beverton-Holt model. More complex consumer dynamics show similarities to a Maynard Smith-Slatkin model.Importantly, we show how population-level parameters, such as intrinsic rates of increase and equilibrium population densities are not independent, as often assumed. Rather, they are functions of the same underlying parameters. The commonly assumed positive relationship between equilibrium population density and competitive ability is typically invalid. As a solution, we propose simple and general relationships between intrinsic rates of increase and equilibrium population densities that capture the essence of different consumer-resource systems.Relating population level models to underlying mechanisms allows us to discuss applications to evolutionary outcomes and how these models depend on environmental conditions, like temperature via metabolic scaling. Finally, we use time-series from microbial food chains to fit population growth models and validate theoretical predictions.Our results show that density-regulation functions need to be chosen carefully as their shapes will depend on the study system’s biology. Importantly, we provide a mechanistic understanding of relationships between model parameters, which has implications for theory and for formulating biologically sound and empirically testable predictions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Muath Awadalla ◽  
Yves Yannick Yameni Noupoue ◽  
Kinda Abu Asbeh

This article studies modeling of a population growth by logistic equation when the population carrying capacity K tends to infinity. Results are obtained using fractional calculus theories. A fractional derivative known as psi-Caputo plays a substantial role in the study. We proved existence and uniqueness of the solution to the problem using the psi-Caputo fractional derivative. The Chinese population, whose carrying capacity, K, tends to infinity, is used as evidence to prove that the proposed approach is appropriate and performs better than the usual logistic growth equation for a population with a large carrying capacity. A psi-Caputo logistic model with the kernel function x + 1 performed the best as it minimized the error rate to 3.20% with a fractional order of derivative α  = 1.6455.


Author(s):  
Michael J. Fogarty ◽  
Jeremy S. Collie

The observation that no population can grow indefinitely and that most populations persist on ecological timescales implies that mechanisms of population regulation exist. Feedback mechanisms include competition for limited resources, cannibalism, and predation rates that vary with density. Density dependence occurs when per capita birth or death rates depend on population density. Density dependence is compensatory when the population growth rate decreases with population density and depensatory when it increases. The logistic model incorporates density dependence as a simple linear function. A population exhibiting logistic growth will reach a stable population size. Non-linear density-dependent terms can give rise to multiple equilibria. With discrete time models or time delays in density-dependent regulation, the approach to equilibrium may not be smooth—complex dynamical behavior is possible. Density-dependent feedback processes can compensate, up to a point, for natural and anthropogenic disturbances; beyond this point a population will collapse.


1976 ◽  
Vol 3 (4) ◽  
pp. 527 ◽  
Author(s):  
S Fukai ◽  
JH Silsbury

Subterranean clover communities were grown in temperature-controlled naturally lit glasshouses at 15, 20, 25 and 30�C. Dry matter yield, leaf area and the distribution of dry matter between plant parts were determined at about 14-day intervals for up to 130 days from planting. Leaf appearance, leaf death, leaf number and growth of laterals were observed for individual plants in the community over a similar time period. A logistic growth curve was found for each temperature and crop growth rate calculated from the equation fitted for each growth curve. The optimum temperature for growth was relatively high (20-25°C) when plants were young, but decreased during growth so that after 100 days total dry matter was inversely related to temperature over the range 15-30°C. Both the rate of leaf appearance and the rate of leaf death on the main stem were constant at each temperature during the experimental period and were directly related to temperature. The number of leaves per unit ground area was determined mainly by the rates of leaf appearance and leaf death on the main stem, since the contribution of laterals was small. The proportion of stem and petiole to total dry matter increased, and that of green leaf lamina decreased, with increase in total dry matter. Neither was markedly affected by temperature. An inverse relationship between specific leaf area and temperature resulted in a lower ratio of leaf area to total dry matter at 15°C compared with that at 20, 25 or 30°C.


Sign in / Sign up

Export Citation Format

Share Document