scholarly journals Toward Objective Evaluation of Working Memory in Visualizations: A Case Study Using Pupillometry and a Dual-Task Paradigm

2019 ◽  
Author(s):  
Lace Padilla ◽  
Spencer Castro ◽  
Q. Samuel Quinan ◽  
Ian Tanner Ruginski ◽  
Sarah Creem-Regehr

Cognitive science has established widely used and validated procedures for evaluating working memory in numerous applied domains, but surprisingly few studies have employed these methodologies to assess claims about the impacts of visualizations on working memory. The lack of information visualization research that uses validated procedures for measuring working memory may be due, in part, to the absence of cross-domain methodological guidance tailored explicitly to the unique needs of visualization research. This paper presents a set of clear, practical, and empirically validated methods for evaluating working memory during visualization tasks and provides readers with guidance in selecting an appropriate working memory evaluation paradigm. As a case study, we illustrate multiple methods for evaluating working memory in a visual-spatial aggregation task with geospatial data. The results show that the use of dual-task experimental designs (simultaneous performance of several tasks compared to single-task performance) and pupil dilation can reveal working memory demands associated with task difficulty and dual-tasking. In a dual-task experimental design, measures of task completion times and pupillometry revealed the working memory demands associated with both task difficulty and dual-tasking. Pupillometry demonstrated that participants’ pupils were significantly larger when they were completing a more difficult task and when multitasking. We propose that researchers interested in the relative differences in working memory between visualizations should consider a converging methods approach, where physiological measures and behavioral measures of working memory are employed to generate a rich evaluation of visualization effort.

2020 ◽  
Vol 26 (1) ◽  
pp. 332-342 ◽  
Author(s):  
Lace M.K. Padilla ◽  
Spencer C. Castro ◽  
P. Samuel Quinan ◽  
Ian T. Ruginski ◽  
Sarah H. Creem-Regehr

2019 ◽  
Author(s):  
Stefan Huijser ◽  
Niels Anne Taatgen ◽  
Marieke K. van Vugt

Preparing for the future during ongoing activities is an essential skill. Yet, it is currently unclear to what extent we can prepare for the future in parallel with another task. In two experiments, we investigated how characteristics of a present task influenced whether and when participants prepared for the future, as well as its usefulness. We focused on the influence of concurrent working memory load, assuming that working memory would interfere most strongly with preparation. In both experiments, participants performed a novel sequential dual-task paradigm, in which they could voluntary prepare for a second task while performing a first task. We identified task preparation by means of eye tracking, through detecting when participants switched their gaze from the first to the second task. The results showed that participants prepared productively, as evidenced by faster RTs on the second task, with only a small cost to the present task. The probability of preparation and its productiveness decreased with general increases in present task difficulty. In contrast to our prediction, we found some but no consistent support for influence of concurrent working memory load on preparation. Only for concurrent high working memory load (i.e., two items in memory), we observed strong interference with preparation. We conclude that preparation is affected by present task difficulty, potentially due to decreased opportunities for preparation and changes in multitasking strategy. Furthermore, the interference from holding two items may reflect that concurrent preparation is compromised when working memory integration is required by both processes.


2015 ◽  
Vol 22 (3) ◽  
pp. 240-249 ◽  
Author(s):  
Chih-Hung Ko ◽  
Tsyh-Jyi Hsieh ◽  
Peng-Wei Wang ◽  
Wei-Chen Lin ◽  
Cheng-Sheng Chen ◽  
...  

Objective: The present study aimed to reveal the brain correlates of phonological working memory (WM), dual tasking, and distraction in adult ADHD combined with the effect of polymorphisms of monoamine oxidase A ( MAOA rs1137070 Asp470Asp). Method: A total of 29 participants with adult ADHD and 21 controls were recruited. They completed 0-back and 2-back tasks, as wells as 2-back tasks with a dual-task effect or a distracting effect, during functional magnetic resonance imaging scanning. Results: The brain activation of WM in the bilateral inferior frontal lobe, pars opercularis, was higher among the adult ADHD group. The genotype of MAOA significantly interacted with the ADHD effect in the left inferior frontal lobe, pars opercularis. Adults with ADHD had higher activation in the left lingual area in response to the dual-tasking effect. Conclusion: The MAOA polymorphism moderated the altered activation in pars opercularis for WM among adults with ADHD. The higher lingual gyrus activation might indicate that higher attention resources are demanded to sustain the dual-task function of adults with ADHD.


2011 ◽  
Vol 18 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Stephanie Gorman ◽  
Marcia A. Barnes ◽  
Paul R. Swank ◽  
Mary Prasad ◽  
Linda Ewing-Cobbs

AbstractThe purpose of this study was to investigate the effects of pediatric traumatic brain injury (TBI) on verbal and visual-spatial working memory (WM). WM tasks examined memory span through recall of the last item of a series of stimuli. Additionally, both verbal and visual-spatial tests had a dual-task condition assessing the effect of increasing demands on the central executive (CE). Inhibitory control processes in verbal WM were examined through intrusion errors. The TBI group (n= 73) performed more poorly on verbal and visual-spatial WM tasks than orthopedic-injured children (n= 30) and non-injured children (n= 40). All groups performed more poorly on the dual-task conditions, reflecting an effect of increasing CE load. This effect was not greater for the TBI group. There were no group differences in intrusion errors on the verbal WM task, suggesting that problems in WM experienced by children with TBI were not primarily due to difficulties in inhibitory control. Finally, injury-related characteristics, namely days to follow commands, accounted for significant variance in WM performance, after controlling for relevant demographic variables. Findings suggest that WM impairments in TBI are general rather than modality-specific and that severity indices measured over time are better predictors of WM performance than those taken at a single time point. (JINS, 2012,18, 29–38)


2020 ◽  
Author(s):  
Stephen Rhodes ◽  
Jason M Doherty ◽  
Agnieszka J Jaroslawska ◽  
Alicia Forsberg ◽  
Clément Belletier ◽  
...  

Working memory is defined by many as the system that allows us to simultaneously store information over brief time periods while engaging in other information processing activities. In a previous study (Rhodes et al., 2019) we found that retention of serially presented letters was disrupted by the introduction of an arithmetic processing task during a 10 second delay period. Importantly, the magnitude of this dual task disruption increased with age from 18 to 81. The demands of each task were adjusted prior to dual task so that age differences did not reflect baseline differences in single task performance. Motivated by these findings, theories of working memory, and additional analyses of processing reaction times from this previous experiment, we report two experiments, using the same tasks and adjustment procedure, attempting to modulate the magnitude of age differences in dual task effects via manipulations focused on time for encoding to-be-remembered material. Providing a delay prior to processing activities, to facilitate switching between the two tasks, did not modulate age differences. Neither did separating the to-be-remembered material temporally, to allow for the creation of more distinct representations. These findings provide two replications of our initial finding and suggest that age differences in working memory dual tasking are not due to limitations in the speed of encoding.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2016 ◽  
Vol 32 (4) ◽  
pp. 298-306 ◽  
Author(s):  
Samuel Greiff ◽  
Katarina Krkovic ◽  
Jarkko Hautamäki

Abstract. In this study, we explored the network of relations between fluid reasoning, working memory, and the two dimensions of complex problem solving, rule knowledge and rule application. In doing so, we replicated the recent study by Bühner, Kröner, and Ziegler (2008) and the structural relations investigated therein [ Bühner, Kröner, & Ziegler, (2008) . Working memory, visual-spatial intelligence and their relationship to problem-solving. Intelligence, 36, 672–680]. However, in the present study, we used different assessment instruments by employing assessments of figural, numerical, and verbal fluid reasoning, an assessment of numerical working memory, and a complex problem solving assessment using the MicroDYN approach. In a sample of N = 2,029 Finnish sixth-grade students of which 328 students took the numerical working memory assessment, the findings diverged substantially from the results reported by Bühner et al. Importantly, in the present study, fluid reasoning was the main source of variation for rule knowledge and rule application, and working memory contributed only a little added value. Albeit generally in line with previously conducted research on the relation between complex problem solving and other cognitive abilities, these findings directly contrast the results of Bühner et al. (2008) who reported that only working memory was a source of variation in complex problem solving, whereas fluid reasoning was not. Explanations for the different patterns of results are sought, and implications for the use of assessment instruments and for research on interindividual differences in complex problem solving are discussed.


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


Sign in / Sign up

Export Citation Format

Share Document