scholarly journals Entropic Information Theory: Formulae and Quantum Gravity, Bits from bit

2021 ◽  
Author(s):  
olivier denis

We show here that entropic information is capable of unifying all aspects of the universe at all scales in a coherent and global theoretical mathematical framework materialized by entropic information framework, theory and formulas, where dark matter, dark energy and gravity are truly informationals processes and where information is code and code is what creates the process, it is itself the process. Mass, energy and movement of information are respectively dark matter, dark energy, and gravity. Here, we reconcile general relativity and quantum mechanics by introducing quantum gravity for the Planckian scale. The formulas of entropic information are expressed in natural units, physical units of measurement based only on universal constants, constants, which refer to the basic structure of the laws of physics: C and G are part of the structure of space-time in general relativity, and h captures the relationship between energy and frequency that is the basis of quantum mechanics. Here we show that entropic information formulas are able to present entropic information in various unifying aspects and introduce gravity at the Planck scale. We prove that Entropic information theory is thus building the bridge between general relativity and quantum mechanics

Author(s):  
Olivier Denis

We show here that entropic information is capable of unifying all aspects of the universe at all scales in a coherent and global theoretical mathematical framework materialized by entropic information framework, theory and formulas, where dark matter, dark energy and gravity are truly informationals processes and where information is code and code is what creates the process, it is itself the process. Mass, energy and movement of information are respectively dark matter, dark energy, and gravity. Here, we reconcile general relativity and quantum mechanics by introducing quantum gravity for the Planckian scale. The formulas of entropic information are expressed in natural units, physical units of measurement based only on universal constants, constants, which refer to the basic structure of the laws of physics:  C and G are part of the structure of space-time in general relativity, and h captures the relationship between energy and frequency that is the basis of quantum mechanics. Here we show that entropic information formulas are able to present entropic information in various unifying aspects and introduce gravity at the Planck scale. We prove that Entropic information theory is thus building the bridge between general relativity and quantum mechanics


2021 ◽  
Author(s):  
olivier denis

We show here that entropic information is capable of unifying all aspects of the universe at all scales in a coherent and global theoretical mathematical framework materialized by entropic information framework, theory and formulas, where dark matter, dark energy and gravity are truly informationals processes and where information is code and code is what creates the process, it is itself the process. Mass, energy and movement of information are respectively dark matter, dark energy, and gravity. Here, we reconcile general relativity and quantum mechanics by introducing quantum gravity for the Planckian scale. The formulas of entropic information are expressed in natural units, physical units of measurement based only on universal constants, constants, which refer to the basic structure of the laws of physics: C and G are part of the structure of space-time in general relativity, and h captures the relationship between energy and frequency that is the basis of quantum mechanics. Here we show that entropic information formulas are able to present entropic information in various unifying aspects and introduce gravity at the Planck scale. We prove that Entropic information theory is thus building the bridge between general relativity and quantum mechanics


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both, and especially the latter, seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive stage of a single conclusion mentioned above. The concept of “transcendental invariance” meaning ontologically and physically interpreting the mathematical equivalence of the axiom of choice and the well-ordering “theorem” is utilized again. Then, time arrow is a corollary from that transcendental invariance, and in turn, it implies quantum information conservation as the Noether correlate of the linear “increase of time” after time arrow. Quantum information conservation implies a few fundamental corollaries such as the “conservation of energy conservation” in quantum mechanics from reasons quite different from those in classical mechanics and physics as well as the “absence of hidden variables” (versus Einstein’s conjecture) in it. However, the paper is concentrated only into the inference of another corollary from quantum information conservation, namely, dark matter and dark energy being due to entanglement, and thus and in the final analysis, to the conservation of quantum information, however observed experimentally only on the “cognitive screen” of “Mach’s principle” in Einstein’s general relativity therefore excluding any other source of gravitational field than mass and gravity. Then, if quantum information by itself would generate a certain nonzero gravitational field, it will be depicted on the same screen as certain masses and energies distributed in space-time, and most presumably, observable as those dark energy and dark matter predominating in the universe as about 96% of its energy and matter quite unexpectedly for physics and the scientific worldview nowadays. Besides on the cognitive screen of general relativity, entanglement is available necessarily on still one “cognitive screen” (namely, that of quantum mechanics), being furthermore “flat”. Most probably, that projection is confinement, a mysterious and ad hoc added interaction along with the fundamental tree ones of the Standard model being even inconsistent to them conceptually, as far as it need differ the local space from the global space being definable only as a relation between them (similar to entanglement). So, entanglement is able to link the gravity of general relativity to the confinement of the Standard model as its projections of the “cognitive screens” of those two fundamental physical theories.


2020 ◽  
Vol 29 (11) ◽  
pp. 2-9
Author(s):  
Bogeun GWAK, ◽  
Bum-Hoon LEE ◽  
Wonwoo LEE

We briefly review both Einstein’s general theory of relativity and the development of modified theories of gravitation with theoretical and observational motivations. For this, we discuss the theoretical properties and weaknesses of general relativity. We also mention attempts that have been made to develop the theory of quantum gravity. The recent detections of a gravitational wave, dark matter, and dark energy have opened new windows into astrophysics, as well as cosmology, through which tests to determine the theory of gravitation that best describes our Universe would be interesting. Most of all, note that we cannot clearly describe our Universe, including dark matter and dark energy, with standard particle models and the general theory of relativity. In these respects, we must be open-minded and study all possible aspects.


2009 ◽  
Vol 18 (05) ◽  
pp. 865-887
Author(s):  
S. K. SRIVASTAVA ◽  
J. DUTTA

In this paper, the cosmology of the late and future universe is obtained from f(R) gravity with nonlinear curvature terms R2 and R3 (R is the Ricci scalar curvature). It is different from f(R) dark energy models where nonlinear curvature terms are taken as a gravitational alternative to dark energy. In the present model, neither linear nor nonlinear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms and appear in the Friedmann equation derived from f(R) gravitational equations. This approach has an advantage over f(R) dark energy models in three ways: (i) results are consistent with WMAP observations, (ii) dark matter is produced from the gravitational sector and (iii) the universe expands as ~ t2/3 during dominance of the curvature-induced dark matter, which is consistent with the standard cosmology. Curvature-induced dark energy mimics phantom and causes late acceleration. It is found that transition from matter-driven deceleration to acceleration takes place at the redshift 0.36 at time 0.59 t0 (t0 is the present age of the universe). Different phases of this model, including acceleration and deceleration during the phantom phase, are investigated. It is found that expansion of the universe will stop at the age of 3.87 t0 + 694.4 kyr. After this epoch, the universe will contract and collapse by the time of 336.87 t0 + 694.4 kyr. Further, it is shown that cosmic collapse obtained from classical mechanics can be avoided by making quantum gravity corrections relevant near the collapse time due to extremely high energy density and large curvature analogous to the state of the very early universe. Interestingly, the cosmological constant is also induced here; it is extremely small in the classical domain but becomes very high in the quantum domain. This result explains the largeness of the cosmological constant in the early universe due to quantum gravity effects during this era and its very low value in the present universe due to negligible quantum effect in the late universe.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 525-531 ◽  
Author(s):  
THIBAULT DAMOUR ◽  
HERMANN NICOLAI

Recent work has revealed intriguing connections between a Belinsky–Khalatnikov–Lifshitz-type analysis of spacelike singularities in general relativity and certain infinite-dimensional Lie algebras, particularly the "maximally extended" hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(–time) at the Planck scale, and hence — via an effective "de-emergence" of space near the singularity — to a novel mechanism for achieving background independence in quantum gravity.


Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

The main thread of chapter 6 prompts the need for quantum gravity (QG) and introduces the RBW approach to QG, unification in particle physics, dark matter, and dark energy. The details of RBW’s modified Regge calculus and modified lattice gauge theory approaches are conveyed conceptually in the main thread. The RBW fits of galactic rotation curves, galactic cluster mass profiles, the angular power spectrum of the cosmic microwave background, and the Union2.1 supernova data associated with dark matter and dark energy are in Foundational Physics for Chapter 6. In Philosophy of Physics for Chapter 6, RBW’s taxonomic location with respect to other discrete approaches to QG is detailed and it is argued that the search for QG is stymied by the dynamical paradigm across the board. Further, it is maintained that an adynamical global constraint as the basis for QG in the block universe provides a self-vindicating unification of physics.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944018 ◽  
Author(s):  
Per Berglund ◽  
Tristan Hübsch ◽  
Djordje Minić

Realizing dark energy and the observed de Sitter spacetime in quantum gravity has proven to be obstructed in almost every usual approach. We argue that additional degrees of freedom of the left- and right-movers in string theory and a resulting doubled, noncommutatively generalized geometric formulation thereof can lead to an effective model of dark energy consistent with de Sitter spacetime. In this approach, the curvature of the canonically conjugate dual space provides for the dark energy inducing a positive cosmological constant in the observed spacetime, whereas the size of the above dual space is the gravitational constant in the same observed de Sitter spacetime. As a hallmark relation owing to a unique feature of string theory which relates short distances to long distances, the cosmological constant scale, the Planck scale and the effective TeV-sized particle physics scale must satisfy a see-saw-like formula — precisely the generic prediction of certain stringy cosmic brane type models.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1005
Author(s):  
Claus Gerhardt

We applied quantum gravitational results to spatially unbounded Friedmann universes and tried to answer some questions related to dark energy, dark matter, inflation, and the missing antimatter.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 137
Author(s):  
Valerio Marra ◽  
Rogerio Rosenfeld ◽  
Riccardo Sturani

Despite the observational success of the standard model of cosmology, present-day observations do not tightly constrain the nature of dark matter and dark energy and modifications to the theory of general relativity. Here, we will discuss some of the ongoing and upcoming surveys that will revolutionize our understanding of the dark sector.


Sign in / Sign up

Export Citation Format

Share Document