scholarly journals New insights into the role of porous microstructure on adiabatic shear localization

2021 ◽  
Author(s):  
A. R. Vishnu ◽  
Mohammed Marvi-Mashhadi ◽  
Juan Carlos Nieto-Fuentes ◽  
Jose Rodriguez-Martinez

This paper provides new insights into the role of porous microstructure on adiabatic shear localization. For that purpose, we have performed 3D finite element calculations of electro-magnetically collapsing thick-walled cylinders. The geometry and dimensions of the cylindrical specimens are taken from the experiments of Lovinger et al. (2015), and the loading and boundary conditions from the 2D simulations performed by Lovinger et al. (2018). The mechanical behavior of the material is modeled as elastic-plastic, with yielding described by the von Mises criterion, an associated flow rule and isotropic hardening/softening, being the flow stress dependent on strain, strain rate and temperature. Moreover, plastic deformation is considered to be the only source of heat, and the analysis accounts for the thermal conductivity of the material. The distinctive feature of this work is that we have followed the methodology developed by Marvi-Mashhadi et al. (2021) to incorporate into the finite element calculations the actual porous microstructure of 4 different additively manufactured materials --aluminium alloy AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel 718-- for which the initial void volume fraction varies between 0.001% and 2%, and the pores size ranges from ≈ 6 µm to ≈ 110 µm. The numerical simulations have been performed using the Coupled Eulerian-Lagrangian approach available in ABAQUS/Explicit (2016) which allows to capture the shape evolution, coalescence and collapse of the voids at large strains. To the authors' knowledge, this paper contains the first finite element simulations with explicit representation of the material porosity which demonstrate that voids promote dynamic shear localization, acting as preferential sites for the nucleation of the shear bands, speeding up their development, and tailoring their direction of propagation. In addition, the numerical calculations bring out that for a given void volume fraction more shear bands are nucleated as the number of voids increases, while the shear bands are incepted earlier and develop faster as the size of the pores increases.

2021 ◽  
Author(s):  
Jose Rodriguez-Martinez ◽  
Mohammad Marvi-Mashhadi ◽  
Alvaro Vaz-Romero ◽  
Federico Sket

In this paper, we have performed a microstructurally-informed finite element analysis on the effect of porosity on the formation of multiple necks and fragments in ductile thin rings subjected to dynamic expansion. For that purpose, we have characterized by X-ray tomography the porous microstructure of 4 different additively manufactured materials (aluminium alloy AlSi10Mg, stainless steel 316L, titanium alloy Ti6Al4V and Inconel 718L) with initial void volume fractions ranging from 0.0007 % to 2 %, and pore sizes varying between 6 micrometers 110 micrometers. Three-dimensional analysis of the tomograms has revealed that the voids generally have nearly spherical shape and quite homogeneous spatial distribution in the bulk of the four materials tested. The pore size distributions quantified from the tomograms have been characterized using a Log-normal statistical function, which has been used in conjunction with a Force Biased Algorithm that replicates the experimentally observed random spatial distribution of the voids, to generate ring expansion finite element models in ABAQUS/Explicit which include actual porous microstructures representative of the materials tested. We have modeled the materials behavior using von Mises plasticity, and we have carried out finite element calculations for both elastic perfectly-plastic materials, and materials which show strain hardening, strain rate hardening and temperature softening effects. Moreover, we have assumed that fracture occurs when a critical value of effective plastic strain is reached. The finite element calculations have been performed for expansion velocities ranging from 50 m/s to 500 m/s. A key point of this investigation is that we have established individualized correlations between the main features of the porous microstructure (i.e. initial void volume fraction, average void size and maximum void size) and the number of necks and fragments formed in the calculations. In addition, we have brought out the effect of the porous microstrucure and inertia on the distributions of neck and fragment sizes. To the authors' knowledge, this is the first paper ever considering actual porous microstructures to investigate the role of material defects in multiple localization and dynamic fragmentation of ductile metallic materials.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1783 ◽  
Author(s):  
Tao Huang ◽  
Mei Zhan ◽  
Kun Wang ◽  
Fuxiao Chen ◽  
Junqing Guo ◽  
...  

In this paper, the initial values of damage parameters in the Gurson–Tvergaard–Needleman (GTN) model are determined by a microscopic test combined with empirical formulas, and the final accurate values are determined by finite element reverse calibration. The original void volume fraction (f0), the volume fraction of potential nucleated voids (fN), the critical void volume fraction (fc), the void volume fraction at the final failure (fF) of material are assigned as 0.006, 0.001, 0.03, 0.06 according to the simulation results, respectively. The hemispherical punch stretching test of commercially pure titanium (TA1) sheet is simulated by a plastic constitutive formula derived from the GTN model. The stress and strain are obtained at the last loading step before crack. The forming limit diagram (FLD) and the forming limit stress diagram (FLSD) of the TA1 sheet under plastic forming conditions are plotted, which are in good agreement with the FLD obtained by the hemispherical punch stretching test and the FLSD obtained by the conversion between stress and strain during the sheet forming process. The results show that the GTN model determined by the finite element reverse calibration method can be used to predict the forming limit of the TA1 sheet metal.


2019 ◽  
Vol 25 (10) ◽  
pp. 1661-1683 ◽  
Author(s):  
Rafael Quelho de Macedo ◽  
Rafael Thiago Luiz Ferreira ◽  
Kuzhichalil Jayachandran

Purpose This paper aims to present experimental and numerical analyses of fused filament fabrication (FFF) printed parts and show how mechanical characteristics of printed ABS-MG94 (acrylonitrile butadiene styrene) are influenced by the void volume fraction, cooling rate and residual thermal stresses. Design/methodology/approach Printed specimens were experimentally tested to evaluate the mechanical properties for different printing speeds, and micrographs were taken. A thermo-mechanical finite element model, able to simulate the FFF process, was developed to calculate the temperature fields in time, cooling rate and residual thermal stresses. Finally, the experimental mechanical properties and the microstructure distribution could be explained by the temperature fields in time, cooling rate and residual thermal stresses. Findings Micrographs revealed the increase of void volume fraction with the printing speed. The variations on voids were associated to the temperature fields in time: when the temperatures remained high for longer periods, less voids were generated. The Young's Modulus of the deposited filament varied according to the cooling rate: it decreased when the cooling rate increased. The influence of the residual thermal stresses and void volume fraction on the printed parts failure was also investigated: in the worst scenarios evaluated, the void volume fraction reduced the strength in 9 per cent, while the residual thermal stresses reduced it in 3.8 per cent. Originality/value This work explains how the temperature fields can affect the void volume fraction, Young's Modulus and failure of printed parts. Experimental and numerical results are shown. The presented research can be used to choose printing parameters to achieve desired mechanical properties of FFF printed parts.


2017 ◽  
Vol 62 (1) ◽  
pp. 167-172 ◽  
Author(s):  
P. G. Kossakowski

Abstract This paper is concerned with the critical void volume fraction fF representing the size of microdefects in a material at the time of failure. The parameter is one of the constants of the Gurson-Tvergaard-Needleman (GTN) material model that need to be determined while modelling material failure processes. In this paper, an original experimental method is proposed to determine the values of fF. The material studied was S235JR steel. After tensile tests, the void volume fraction was measured at the fracture surface using an advanced technique of quantitative image analysis The material was subjected to high initial stress triaxialities T0 ranging from 0.556 to 1.345. The failure processes in S235JR steel were analysed taking into account the influence of the state of stress.


Sign in / Sign up

Export Citation Format

Share Document