scholarly journals Photonic integrated circuits for life sciences

2021 ◽  
Author(s):  
Jeremy Witzens ◽  
Patrick Leisching ◽  
Alireza Tabatabaei Mashayekh ◽  
Thomas Klos ◽  
Sina Koch ◽  
...  

A large number of discrete optical components could be replaced by a photonic integrated circuit in a multi-color laser engine for the visible spectral range. The photonic integrated circuit is based on silicon nitride waveguide technology. We report on the use of silicon nitride (SiN) photonic integrated circuits (PICs) in high-value instrumentation, namely multi-color laser engines (MLEs), a core element of cutting-edge biophotonic systems applied to confocal microscopy, fluorescent microscopy - including super-resolution stimulated emission depletion (STED) microscopy - flow cytometry, optogenetics, genetic analysis and DNA sequencing, to name just a few. These have in common the selective optical excitation of molecules - fluorophores, or, in the case of optogenetics, light-gated ion channels - with laser radiation falling within their absorption spectrum. Unambiguous identification of molecules or cellular subsets often requires jointly analyzing fluorescent signals from several fluorescent markers, so that MLEs are required to provide excitation wavelengths for several commercially available biocompatible fluorophores. A number of functionalities are required from MLEs in addition to sourcing the required wavelengths: Variable attenuation and/or digital intensity modulation in the Hz to kHz range are required for a number of applications such as optical trapping, lifetime imaging, or fluorescence recovery after photobleaching (FRAP). Moreover, switching of the laser between two fiber outputs can be utilized for example to switch between scanning confocal microscopy and widefield illumination modes, for instance, for conventional fluorescence imaging.

2021 ◽  
Vol 2086 (1) ◽  
pp. 012163
Author(s):  
N I Popovskiy ◽  
V V Davydov ◽  
V Yu Rud

Abstract The article discusses the main methods of signal processing in a coherent optical transport network based on a photonic integrated circuit to increase the speed and the onset of the terabit era in optical transport networks, cloud and high-performance computing systems. The properties and operational characteristics of the main material platforms of photonic integrated circuits and their future technological units are considered.


Author(s):  
Jeroen Goyvaerts ◽  
Sulakshna Kumari ◽  
Sarah Uvin ◽  
Jing Zhang ◽  
Roel Baets ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 599
Author(s):  
Jerry R. Meyer ◽  
Chul Soo Kim ◽  
Mijin Kim ◽  
Chadwick L. Canedy ◽  
Charles D. Merritt ◽  
...  

We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.


Author(s):  
Rilond Pattia Matital ◽  
Danila Anatolievich Kolymagin ◽  
Dmitriy Anatolievich Chubich ◽  
Denis Dmitrievich Merkushev ◽  
Alexei Grigorievich Vitukhnovsky

2018 ◽  
Vol 43 (17) ◽  
pp. 4140 ◽  
Author(s):  
Abu Naim R. Ahmed ◽  
Andrew Mercante ◽  
Shouyuan Shi ◽  
Peng Yao ◽  
Dennis W. Prather

2019 ◽  
Vol 220 ◽  
pp. 03012
Author(s):  
Ilia Elmanov ◽  
Anna Elmanova ◽  
Sophia Komrakova ◽  
Alexander Golikov ◽  
Natalya Kaurova ◽  
...  

In the work the thicknesses of the e-beam resists ZEP 520A and ma-N 2400 by using non-destructive method were measured, as well as recipe for the high ratio between the Si3N4 and the resists etching rate was determined. The work has a practical application for e-beam lithography of photonic-integrated circuits and nanophotonics devices based on silicon nitride platform.


2015 ◽  
Vol 1 (8) ◽  
pp. e1500257 ◽  
Author(s):  
Chuang Zhang ◽  
Chang-Ling Zou ◽  
Yan Zhao ◽  
Chun-Hua Dong ◽  
Cong Wei ◽  
...  

A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 105, which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.


2021 ◽  
Author(s):  
Christos Tsokos ◽  
Efstathios Andrianopoulos ◽  
Adam Raptakis ◽  
Nikolaos Lyras ◽  
Lefteris Gounaridis ◽  
...  

<div>We demonstrate a broadband and continuously tunable 1×4 optical beamforming network (OBFN), based on the hybrid integration of indium phosphide (InP) components in the silicon nitride (Si3N4) platform. The photonic integrated circuit (PIC) comprises a hybrid InP-Si3N4 external cavity laser, a pair of InP phase modulators, a Si3N4 optical single-sideband full carrier (SSBFC) filter followed by four tunable optical true time delay lines (OTTDLs), and four InP photodetectors. The performance of the OBFN-PIC is experimentally characterized by measuring the link gain, noise figure, and spurious free dynamic range of the microwave photonics links. Moreover, we assess its beamforming capabilities assuming that the OBFN-PIC is part of a wireless system operating in the downlink direction and feeds a multielement antenna array. Using microwave signals at 5 and 10 GHz with quadrature amplitude modulation (QAM) formats at 500 Mbaud, we evaluate the performance of the OBFN-PIC under various configurations. An error-free performance is achieved for all the experimental cases validating the potential of the proposed OBFN-PIC for high-quality beamforming performance. To our best of knowledge, this is the first thorough performance evaluation of a fully integrated OBFN-PIC.</div>


Sign in / Sign up

Export Citation Format

Share Document