scholarly journals Review Industri Semen

2019 ◽  
Author(s):  
Febri Andini ◽  
Laila Suryani ◽  
Hildayati Amri

Industri semen nasional adalah industri strategis yang sangat dibutuhkan dalam setiap negara. Perkembangan infrastruktur memegang peranan penting dalam pembangunan nasional. Salah satu material penunjang untuk melakukan pembangunan nasional adalah semen (cement). Studi ini membahas tentang sejarah semen, sejarah industri semen di Indonesia, komponen semen, alat-alat produksi semen, rangkaian peralatan, proses pembuatan semen, karakteristik semen, jenis-jenis semen, negara penghasil semen terbesar di dunia, Semen Indonesia, limbah industri semen dan dampak industri semen terhadap lingkungan. Semen awalnya dikenal di Mesir sekitar tahun 500 SM untuk pembuatan piramida. Di Indonesia, perusahaan semen pertama adalah PT Semen Padang yang didirikan pada tanggal 18 Maret 1910 dengan nama NV Nederlandsch Indische Portland Cement Maatschappij (NV NIPCM). Komponen semen diantarnya Dicalsium Silicate (2CaO.SiO2 atau C2S), Tricalcium Silicate (3CaO.SiO2 atau C3S), Tricalcium Alumina (3CaO.Al2O3 atau C3A) dan Tetra Calcium Aluminate Ferrite (4CaO.Al2O3 atau C4AF). Alat-alat produksi semen terdiri atas unit pengolahan bahan, unit pembakaran, unit penggilingan akhir dan unit pengisian packing. Rangkaian peralatan terdiri dari traktor, bulldozer, backhoe, dump truck dan belt conveyor. Proses pembuatan semen dibagi menjadi proses basah (wet process) dan proses kering (dry process). Karakteristik semen terdiri dari sifat fisika dan sifat kimia. Jenis-jenis semen diantarnya adalah semen portland, semen putih, semen sumur minyak, semen pozolan, semen belerang, semen magnesium oksiklorida, mixed and fly ash cement, semen alumina tinggi dan semen silikat. Negara penghasil semen terbesar di dunia adalah China, India, Amerika Serikat dan Irak. PT Semen Indonesia (Persero) Tbk adalah produsen semen terbesar di Indonesia Limbah terbesar industri semen adalah limbah gas dan limbah partikel. Industri semen berdampak terhadap lingkungan yaitu lahan, air dan udara.

2019 ◽  
Author(s):  
Febri Andini ◽  
Laila Suryani ◽  
Hildayati Amri

Industri semen nasional adalah industri strategis yang sangat dibutuhkan dalam setiap negara. Perkembangan infrastruktur memegang peranan penting dalam pembangunan nasional. Salah satu material penunjang untuk melakukan pembangunan nasional adalah semen (cement). Studi ini membahas tentang sejarah semen, sejarah industri semen di Indonesia, komponen semen, alat-alat produksi semen, rangkaian peralatan, proses pembuatan semen, karakteristik semen, jenis-jenis semen, negara penghasil semen terbesar di dunia, Semen Indonesia, limbah industri semen dan dampak industri semen terhadap lingkungan. Semen awalnya dikenal di Mesir sekitar tahun 500 SM untuk pembuatan piramida. Di Indonesia, perusahaan semen pertama adalah PT Semen Padang yang didirikan pada tanggal 18 Maret 1910 dengan nama NV Nederlandsch Indische Portland Cement Maatschappij (NV NIPCM). Komponen semen diantarnya Dicalsium Silicate (2CaO.SiO2 atau C2S), Tricalcium Silicate (3CaO.SiO2 atau C3S), Tricalcium Alumina (3CaO.Al2O3 atau C3A) dan Tetra Calcium Aluminate Ferrite (4CaO.Al2O3 atau C4AF). Alat-alat produksi semen terdiri atas unit pengolahan bahan, unit pembakaran, unit penggilingan akhir dan unit pengisian packing. Rangkaian peralatan terdiri dari traktor, bulldozer, backhoe, dump truck dan belt conveyor. Proses pembuatan semen dibagi menjadi proses basah (wet process) dan proses kering (dry process). Karakteristik semen terdiri dari sifat fisika dan sifat kimia. Jenis-jenis semen diantarnya adalah semen portland, semen putih, semen sumur minyak, semen pozolan, semen belerang, semen magnesium oksiklorida, mixed and fly ash cement, semen alumina tinggi dan semen silikat. Negara penghasil semen terbesar di dunia adalah China, India, Amerika Serikat dan Irak. PT Semen Indonesia (Persero) Tbk adalah produsen semen terbesar di Indonesia Limbah terbesar industri semen adalah limbah gas dan limbah partikel. Industri semen berdampak terhadap lingkungan yaitu lahan, air dan udara.


2019 ◽  
Vol 11 (3) ◽  
pp. 908 ◽  
Author(s):  
Jung Kim ◽  
Woo Kwon

The increasing CO2 concentration in the Earth’s atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. Carbonation is a technique that can be used as a carbon capture and storage (CCS) technology for CO2 sequestration. In this study, the utilization of the fly ash from a solid refused fuel (SRF) power plant as a solid sorbent material for CO2 capture via semi-dry carbonation reaction was evaluated as a simple process to reduce CO2. The fly ash was exposed to accelerated carbonation conditions at a relative humidity of 25, 50, 75, and 100%, to investigate the effects of humidity on the carbonation kinetics of the fly ash. The reaction conditions such as moisture, concentration of CO2, and reaction time can affect CO2 capture performance of fly ash. Due to a short diffusion length of H2CO3 in water, the semi-dry process exhibits faster carbonation reaction than the wet process. Especially, the semi-dry process does not require a wastewater treatment plant because it uses a small amount of water. This study may have important implications, illustrating the possibility of replacing the wet process with the semi-dry process.


2019 ◽  
pp. 06-11
Author(s):  
Prof. Romi Morzelona

Portland cement is used around the world and used as a simple component of concrete, mortar, plaster etc. the dry process is used when raw material are relatively hard. This process is slow and its creation is expensive. The wet process consist many operation like mixing, burning and grinding to manufacture the cement.


2020 ◽  
pp. 01-06
Author(s):  
Ms. Elena Rosemaro

In this paper we are discussing wet and dry process of Portland cement manufacture. Wet process minerals are wet ground to form a slurry and in dry process minerals are dry ground to form a powder like substance. In this paper, we are discussing the comparison between wet process and dry process with various advantages and disadvantages.


2000 ◽  
Vol 49 (2) ◽  
pp. 209-214
Author(s):  
Minoru TAKEHIRO ◽  
Seishi GOTO ◽  
Koji IOKU ◽  
Hirotaka FUJIMORI

2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2013 ◽  
Vol 864-867 ◽  
pp. 1923-1928
Author(s):  
Yue Xu ◽  
Jian Xi Li ◽  
Li Li Kan

A new kind of high strength cementitious material is made from phosphogypsum (PG), active carbon and fly-ash. Through the orthogonal research, it was showed that the calcination temperature, retention time, dosage of active carbon and fly ash on the compressive strength of cementitious binder are the most important. The result also showed that, in the conditions of temperature 1200°C, time retention 30 min, dosage of active carbon 10%, dosage of fly ash 5%, the compressive strength of the cementitious material for 3d and 28d could reach to 46.35MPa and 92.70MPa, the content of sulfur trioxide was 11.60% accordingly. A lot of active mineral materials, such as dicalcium silicate, tricalcium silicate, tricalcium aluminate were formed in the calcination. The C-S-H gel, calcium hydroxide and ettringite were found in 3d and 28d hydrates. It is found that the lime saturation ratio and silica modulus need to be control between 0.40~0.65 and 4~8 in order to produce high strength cementitious material.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


2008 ◽  
Vol 38 (6) ◽  
pp. 832-840 ◽  
Author(s):  
David G. Snelson ◽  
Stan Wild ◽  
Martin O'Farrell

2012 ◽  
Vol 29 ◽  
pp. 33-41 ◽  
Author(s):  
Vili Lilkov ◽  
Ognyan Petrov ◽  
Yana Tzvetanova ◽  
Plamen Savov

Sign in / Sign up

Export Citation Format

Share Document