scholarly journals Modeling of 3D Isotropic Distribution of Hydraulic Conductivity using Neural Network

2017 ◽  
Author(s):  
Hafidz Mabruri ◽  
Tedy Agung Cahyadi ◽  
Lilik Eko Widodo ◽  
Irwan Iskandar

In most natural condition, hydraulic conductivity distribution is heterogeneous and anisotropic that is affected by local lithological condition, such as rock porosity and rock joint distribution. Therefore, the more porous of lithology the more hydraulic conductivity number it gets. In the previous study, spatial hydraulic conductivity distribution is modeled using Kriging with the aid of SeGMS software. Three dimensional (3D) hydraulic conductivity distributions in sedimentary rocks, which are isotropic and heterogeneous, can be used for groundwater flow modeling. This paper discusses the modeling 3D hydraulic conductivity distribution using Neural Network (NN). The hydraulic conductivity as a target value is trained segmentally from its position in x, y, z coordinate using NN. Numbers of nodes and hidden layers will be affected by complexity of the data. Geological validation and cross validation show that NN can be applied for modeling the spatial hydraulic conductivity distribution

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6883
Author(s):  
Kent Wu ◽  
Suzy He ◽  
Geoff Fernie ◽  
Atena Roshan Fekr

Slip-induced falls are among the most common causes of major occupational injuries and economic loss in Canada. Identifying the risk factors associated with slip events is key to developing preventive solutions to reduce falls. One factor is the slip-resistance quality of footwear, which is fundamental to reducing the number of falls. Measuring footwear slip resistance with the recently developed Maximum Achievable Angle (MAA) test requires a trained researcher to identify slip events in a simulated winter environment. The human capacity for information processing is limited and human error is natural, especially in a cold environment. Therefore, to remove conflicts associated with human errors, in this paper a deep three-dimensional convolutional neural network is proposed to detect the slips in real-time. The model has been trained by a new dataset that includes data from 18 different participants with various clothing, footwear, walking directions, inclined angles, and surface types. The model was evaluated on three types of slips: Maxi-slip, midi-slip, and mini-slip. This classification is based on the slip perception and recovery of the participants. The model was evaluated based on both 5-fold and Leave-One-Subject-Out (LOSO) cross validation. The best accuracy of 97% was achieved when identifying the maxi-slips. The minimum accuracy of 77% was achieved when classifying the no-slip and mini-slip trials. The overall slip detection accuracy was 86% with sensitivity and specificity of 81% and 91%, respectively. The overall accuracy dropped by about 2% in LOSO cross validation. The proposed slip detection algorithm is not only beneficial for footwear manufactures to improve their footwear slip resistance quality, but it also has other potential applications, such as improving the slip resistance properties of flooring in healthcare facilities, commercial kitchens, and oil drilling platforms.


2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Charles Gbenga Williams ◽  
Oluwapelumi O. Ojuri

AbstractAs a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better.


2021 ◽  
Vol 438 ◽  
pp. 72-83
Author(s):  
Nonato Rodrigues de Sales Carvalho ◽  
Maria da Conceição Leal Carvalho Rodrigues ◽  
Antonio Oseas de Carvalho Filho ◽  
Mano Joseph Mathew

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2939
Author(s):  
Yong Hong ◽  
Jin Liu ◽  
Zahid Jahangir ◽  
Sheng He ◽  
Qing Zhang

This paper provides an efficient way of addressing the problem of detecting or estimating the 6-Dimensional (6D) pose of objects from an RGB image. A quaternion is used to define an object′s three-dimensional pose, but the pose represented by q and the pose represented by -q are equivalent, and the L2 loss between them is very large. Therefore, we define a new quaternion pose loss function to solve this problem. Based on this, we designed a new convolutional neural network named Q-Net to estimate an object’s pose. Considering that the quaternion′s output is a unit vector, a normalization layer is added in Q-Net to hold the output of pose on a four-dimensional unit sphere. We propose a new algorithm, called the Bounding Box Equation, to obtain 3D translation quickly and effectively from 2D bounding boxes. The algorithm uses an entirely new way of assessing the 3D rotation (R) and 3D translation rotation (t) in only one RGB image. This method can upgrade any traditional 2D-box prediction algorithm to a 3D prediction model. We evaluated our model using the LineMod dataset, and experiments have shown that our methodology is more acceptable and efficient in terms of L2 loss and computational time.


2020 ◽  
Vol 17 (11) ◽  
pp. 1475-1484
Author(s):  
Alexander Goehler ◽  
Tzu-Ming Harry Hsu ◽  
Ronilda Lacson ◽  
Isha Gujrathi ◽  
Raein Hashemi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document