scholarly journals Perceptual decision confidence is sensitive to forgone physical effort expenditure

2020 ◽  
Author(s):  
William Turner ◽  
Raina Angdias ◽  
Daniel Feuerriegel ◽  
Trevor Chong ◽  
Robert Hester ◽  
...  

Contemporary theoretical accounts of metacognition propose that action-related information is used in the computation of perceptual decision confidence. We investigated whether the amount of expended physical effort, or the ‘motoric sunk cost’ of a decision, influences perceptual decision confidence judgements in humans. In particular, we examined whether people feel more confident in decisions which required more effort to report. Forty-two participants performed a luminance discrimination task that involved identifying which of two flickering grayscale squares was brightest. Participants reported their choice by squeezing hand-held dynamometers. Across trials, the effort required to report a decision was varied across three levels (low, medium, high). Critically, participants were only aware of the required effort level on each trial once they had initiated their motor response, meaning that the varying effort requirements could not influence their initial decisions. Following each decision, participants rated their confidence in their choice. We found that participants were more confident in decisions that required greater effort to report. This suggests that humans are sensitive to motoric sunk costs and supports contemporary models of metacognition in which actions inform the computation of decision confidence.

Cognition ◽  
2021 ◽  
Vol 207 ◽  
pp. 104525
Author(s):  
William Turner ◽  
Raina Angdias ◽  
Daniel Feuerriegel ◽  
Trevor T.-J. Chong ◽  
Robert Hester ◽  
...  

2017 ◽  
Author(s):  
Brian Odegaard ◽  
Piercesare Grimaldi ◽  
Seong Hah Cho ◽  
Megan A.K. Peters ◽  
Hakwan Lau ◽  
...  

AbstractRecent studies suggest that neurons in sensorimotor circuits involved in perceptual decision-making also play a role in decision confidence. In these studies, confidence is often considered to be an optimal readout of the probability that a decision is correct. However, the information leading to decision accuracy and the report of confidence often co-varied, leaving open the possibility that there are actually two dissociable signal types in the brain: signals that correlate with decision accuracy (optimal confidence) and signals that correlate with subjects’ behavioral reports of confidence (subjective confidence). We recorded neuronal activity from a sensorimotor decision area, the superior colliculus (SC) of monkeys, while they performed two different tasks. In our first task, decision accuracy and confidence co-varied, as in previous studies. In our second task, we implemented a novel motion discrimination task with stimuli that were matched for decision accuracy but produced different levels of confidence as reflected by behavioral reports. We used a multivariate decoder to predict monkeys’ choices from neuronal population activity. As in previous studies on perceptual decision-making mechanisms, we found that neuronal decoding performance increased as decision accuracy increased. However, when decision accuracy was matched, performance of the decoder was similar between high and low subjective confidence conditions. These results show that the SC likely signals optimal decision confidence similar to previously reported cortical mechanisms, but is unlikely to play a critical role in subjective confidence. The results also motivate future investigations to determine where in the brain signals related to subjective confidence reside.Significance StatementConfidence is thought to reflect the rational or optimal belief concerning one’s choice accuracy. Here, we introduce a novel version of the dot-motion discrimination task with stimulus conditions that produce similar accuracy but different subjective behavioral reports of confidence. We decoded decision performance of this task from neuronal signals in the superior colliculus (SC), a subcortical region involved in decision-making. We found that SC activity signaled a perceptual decision for visual stimuli, with the strength of this activity reflecting decision accuracy, but not the subjective level of confidence as reflected by behavioral reports. These results demonstrate an important role for the SC in perceptual decision-making and challenge current ideas about how to measure subjective confidence in monkeys and humans.


2020 ◽  
pp. 152700252098343
Author(s):  
Quinn Andrew Wesley Keefer

The 2011 NFL collective bargaining agreement introduced significant changes to rookie compensation, including a rookie wage scale. We test if the new rules changed how sunk costs affect utilization for drafted rookies. Our regression discontinuity results show a robust sunk-cost fallacy that is similar in magnitude to the one documented under the previous agreement. Second-round selections play significantly less than their first-round counterparts, as measured by percentage of games started, total snaps played, and percentage of snaps played. However, the effect is not evident beyond the rookie season. Additional results show coaching success and coaching changes are important factors.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Vimal K. Viswanathan ◽  
Julie S. Linsey

Researchers and design practitioners advocate building physical models of ideas at early stages of the design process. Still, the cognitive effects of physical models remain largely unknown. Some studies show that physical models possess the potential to facilitate the generation of high quality ideas. Conversely, other studies demonstrate that physical models can lead to design fixation. A prior controlled study by the authors failed to detect fixation due to early stage physical models. Based upon these conflicting results, this study hypothesizes that the fixation observed in prior studies can be explained by the Sunk Cost Effect. The Sunk Cost Effect pertains to an individual's reluctance to choose a different path of action once he/she invests a significant cost (money, time, or effort). According to this theory, as designers spend more time, money or effort in building physical models, they tend to generate ideas with lower novelty and variety. The prior observational studies use complicated design problems with higher costs compared to the controlled study, possibly explaining the difference in results. This study also hypothesizes that physical models supplement designers' erroneous mental models. The authors investigate these hypotheses through a controlled, between-subject experiment with five conditions: Sketching Only, Metal Building (low time cost), Plastic Building (high time cost), Metal Constrained Sketching, and Plastic Constrained Sketching. In each condition, subjects construct their ideas using materials specified by the name of the condition. The constrained sketching conditions assist in determining if participants tend to limit their ideas to only ones that can be built with given materials even though they are instructed to write down all ideas. The results confirm that the sunk cost of building plays a vital role in the observed fixation; thus, physical models do not inherently cause fixation. Moreover, results also show that physical models supplement designers' erroneous mental models, leading to higher quality ideas. To minimize sunk costs very early in the design process, models should be built with materials requiring minimal time, cost, and effort for the designers.


2021 ◽  
Author(s):  
Maxine Tamara Sherman ◽  
Anil Seth

In daily life, repeated experiences with a task (e.g. driving) will generally result in the development of a belief about one’s ability (“I am a good driver”). Here we ask how such beliefs, termed self-efficacy, interact with metacognitive confidence judgements. Across three pre-registered experiments, participants performed a perceptual discrimination task and reported their decision confidence. We induced contextual beliefs about performance (our operationalisation of self-efficacy) by manipulating the prior probability of an easy or hard trial occurring in each block. In Experiment 1 easy and hard trials generated the same levels of performance (a “subjective difficulty” manipulation), whereas in Experiments 2 and 3 performance differed across difficulty conditions (an “objective difficulty” manipulation). Results showed that context (self-efficacy) and difficulty interacted multiplicatively, consistent with the notion that confidence judgements combine decision evidence with a prior (contextual) belief on being correct. This occurred despite context having no corresponding effect on performance. We reasoned that performing tasks in easy contexts may reduce cognitive “load”, and tested this, in Experiment 3, by instructing participants to perform two tasks concurrently. Consistent with a reduction in load, the effects of context transferred from influencing confidence on our primary task to improving performance on the secondary task. Taken together, these studies reveal that contextual beliefs about performance facilitate multitasking, potentially by reducing the load of tasks believed to be easy, and they extend psychophysical investigations of perceptual decision-making by incorporating ‘higher-order’ beliefs about difficulty context, corresponding to intuitive notions of self-efficacy.


2018 ◽  
Author(s):  
Ben Deverett ◽  
Sue Ann Koay ◽  
Marlies Oostland ◽  
Samuel S.-H. Wang

To make successful evidence-based decisions, the brain must rapidly and accurately transform sensory inputs into specific goal-directed behaviors. Most experimental work on this subject has focused on forebrain mechanisms. Here we show that during perceptual decision-making over a period of seconds, decision-, sensory-, and error-related information converge on the lateral posterior cerebellum in crus I, a structure that communicates bidirectionally with numerous forebrain regions. We trained mice on a novel evidence-accumulation task and demonstrated that cerebellar inactivation reduces behavioral accuracy without impairing motor parameters of action. Using two-photon calcium imaging, we found that Purkinje cell somatic activity encoded choice- and evidence-related variables. Decision errors were represented by dendritic calcium spikes, which are known to drive plasticity. We propose that cerebellar circuitry may contribute to the set of distributed computations in the brain that support accurate perceptual decision-making.


2020 ◽  
Author(s):  
William Turner ◽  
Daniel Feuerriegel ◽  
Robert Hester ◽  
Stefan Bode

AbstractWe often need to rapidly change our mind about perceptual decisions in order to account for new information and correct mistakes. One fundamental, unresolved question is whether information processed prior to a decision being made (‘pre-decisional information’) has any influence on the likelihood and speed with which that decision is reversed. We investigated this using a luminance discrimination task in which participants indicated which of two flickering greyscale squares was brightest. Following an initial decision, the stimuli briefly remained on screen, and participants could change their response. Using psychophysical reverse correlation, we examined how moment-to-moment fluctuations in stimulus luminance affected participants’ decisions. This revealed that the strength of even the very earliest (pre-decisional) evidence was associated with the likelihood and speed of later changes of mind. To account for this effect, we propose an extended diffusion model in which an initial ‘snapshot’ of sensory information biases ongoing evidence accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua-an Tseng ◽  
Xue Han

Prefrontal cortex (PFC) are broadly linked to various aspects of behavior. During sensory discrimination, PFC neurons can encode a range of task related information, including the identity of sensory stimuli and related behavioral outcome. However, it remains largely unclear how different neuron subtypes and local field potential (LFP) oscillation features in the mouse PFC are modulated during sensory discrimination. To understand how excitatory and inhibitory PFC neurons are selectively engaged during sensory discrimination and how their activity relates to LFP oscillations, we used tetrode recordings to probe well-isolated individual neurons, and LFP oscillations, in mice performing a three-choice auditory discrimination task. We found that a majority of PFC neurons, 78% of the 711 recorded individual neurons, exhibited sensory discrimination related responses that are context and task dependent. Using spike waveforms, we classified these responsive neurons into putative excitatory neurons with broad waveforms or putative inhibitory neurons with narrow waveforms, and found that both neuron subtypes were transiently modulated, with individual neurons’ responses peaking throughout the entire duration of the trial. While the number of responsive excitatory neurons remain largely constant throughout the trial, an increasing fraction of inhibitory neurons were gradually recruited as the trial progressed. Further examination of the coherence between individual neurons and LFPs revealed that inhibitory neurons exhibit higher spike-field coherence with LFP oscillations than excitatory neurons during all aspects of the trial and across multiple frequency bands. Together, our results demonstrate that PFC excitatory neurons are continuously engaged during sensory discrimination, whereas PFC inhibitory neurons are increasingly recruited as the trial progresses and preferentially coordinated with LFP oscillations. These results demonstrate increasing involvement of inhibitory neurons in shaping the overall PFC dynamics toward the completion of the sensory discrimination task.


2020 ◽  
Author(s):  
Julia Watzek ◽  
Sarah Brosnan

Human decision-making is often swayed by irrecoverable investments even though it should only be based on future – and not past – costs and benefits. Although this sunk cost effect is widely documented and can lead to devastating losses, the underlying psychological mechanisms are unclear. To tease apart possible explanations through a comparative approach, we assessed capuchin and rhesus monkeys’ susceptibility to sunk costs in a psychomotor task. Monkeys needed to track a moving target with a joystick-controlled cursor for variable durations. They could stop at any time, ending the trial without reward. To minimize the work required for a reward, monkeys should have always persisted for at least 1 second, but should have abandoned the trial if that did not yield a reward. Capuchin monkeys and especially rhesus macaques persisted to trial completion even when it was suboptimal, and were more likely to complete the trial the longer they had already tracked the target. These effects were less pronounced, although still present, when the change in expected tracking duration was signalled visually. These results show that sunk cost effects can arise in the absence of human-unique factors and may emerge, in part, because persisting can resolve uncertainty.


Sign in / Sign up

Export Citation Format

Share Document