scholarly journals Mother-child similarity in brain morphology: A comparison of structural characteristics of the brain’s reading network

2021 ◽  
Author(s):  
Lynn V. Fehlbaum ◽  
Lien Peters ◽  
Plamina Dimanova ◽  
Margot ROELL ◽  
Réka Borbás ◽  
...  

Background: Substantial evidence acknowledges the complex gene-environment interplay impacting brain development and learning. Intergenerational neuroimaging allows the assessment of familial transfer effects on brain structure, function and behavior by investigating neural similarity in caregiver-child dyads. Methods: Neural similarity in the human reading network was assessed through well-used measures of brain structure (i.e., surface area (SA), gyrification (lG), sulcal morphology, gray matter volume (GMV) and cortical thickness (CT)) in 69 mother-child dyads (children’s age~11y). Regions of interest for the reading network included left-hemispheric inferior frontal gyrus, inferior parietal lobe and fusiform gyrus. Mother-child similarity was quantified by correlation coefficients and familial specificity was tested by comparison to random adult-child dyads. Sulcal morphology analyses focused on occipitotemporal sulcus interruptions and similarity was assessed by chi-square goodness of fit. Results: Significant structural brain similarity was observed for mother-child dyads in the reading network for lG, SA and GMV (r=0.349/0.534/0.542, respectively), but not CT. Sulcal morphology associations were non-significant. Structural brain similarity in lG, SA and GMV were specific to parent- child pairs. Furthermore, structural brain similarity for SA and GMV was higher compared to CT. Conclusion: Intergenerational neuroimaging techniques promise to enhance our knowledge of familial transfer effects on brain development and disorders.

Author(s):  
Rachel M. Brouwer ◽  
Marieke Klein ◽  
Katrina L. Grasby ◽  
Hugo G. Schnack ◽  
Neda Jahanshad ◽  
...  

AbstractHuman brain structure changes throughout our lives. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. While heritable, specific loci in the genome that influence these rates are largely unknown. Here, we sought to find common genetic variants that affect rates of brain growth or atrophy, in the first genome-wide association analysis of longitudinal changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, were used to compute rates of morphological change for 15 brain structures. We discovered 5 genome-wide significant loci and 15 genes associated with brain structural changes. Most individual variants exerted age-dependent effects. All identified genes are expressed in fetal and adult brain tissue, and some exhibit developmentally regulated expression across the lifespan. We demonstrate genetic overlap with depression, schizophrenia, cognitive functioning, height, body mass index and smoking. Several of the discovered loci are implicated in early brain development and point to involvement of metabolic processes. Gene-set findings also implicate immune processes in the rates of brain changes. Taken together, in the world’s largest longitudinal imaging genetics dataset we identified genetic variants that alter age-dependent brain growth and atrophy throughout our lives.One-sentence summaryWe identified common genetic variants associated with the rate of brain development and aging, in longitudinal MRI scans worldwide.


Author(s):  
Nora Penzel ◽  
◽  
Linda A. Antonucci ◽  
Linda T. Betz ◽  
Rachele Sanfelici ◽  
...  

AbstractCannabis use during adolescence is associated with an increased risk of developing psychosis. According to a current hypothesis, this results from detrimental effects of early cannabis use on brain maturation during this vulnerable period. However, studies investigating the interaction between early cannabis use and brain structural alterations hitherto reported inconclusive findings. We investigated effects of age of cannabis initiation on psychosis using data from the multicentric Personalized Prognostic Tools for Early Psychosis Management (PRONIA) and the Cannabis Induced Psychosis (CIP) studies, yielding a total sample of 102 clinically-relevant cannabis users with recent onset psychosis. GM covariance underlies shared maturational processes. Therefore, we performed source-based morphometry analysis with spatial constraints on structural brain networks showing significant alterations in schizophrenia in a previous multisite study, thus testing associations of these networks with the age of cannabis initiation and with confounding factors. Earlier cannabis initiation was associated with more severe positive symptoms in our cohort. Greater gray matter volume (GMV) in the previously identified cerebellar schizophrenia-related network had a significant association with early cannabis use, independent of several possibly confounding factors. Moreover, GMV in the cerebellar network was associated with lower volume in another network previously associated with schizophrenia, comprising the insula, superior temporal, and inferior frontal gyrus. These findings are in line with previous investigations in healthy cannabis users, and suggest that early initiation of cannabis perturbs the developmental trajectory of certain structural brain networks in a manner imparting risk for psychosis later in life.


2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Kyoung Lee ◽  
Sang Yoo ◽  
Eun Ji ◽  
Woo Hwang ◽  
Yeun Yoo ◽  
...  

Lateropulsion (pusher syndrome) is an important barrier to standing and gait after stroke. Although several studies have attempted to elucidate the relationship between brain lesions and lateropulsion, the effects of specific brain lesions on the development of lateropulsion remain unclear. Thus, the present study investigated the effects of stroke lesion location and size on lateropulsion in right hemisphere stroke patients. The present retrospective cross-sectional observational study assessed 50 right hemisphere stroke patients. Lateropulsion was diagnosed and evaluated using the Scale for Contraversive Pushing (SCP). Voxel-based lesion symptom mapping (VLSM) analysis with 3T-MRI was used to identify the culprit lesion for SCP. We also performed VLSM controlling for lesion volume as a nuisance covariate, in a multivariate model that also controlled for other factors contributing to pusher behavior. VLSM, combined with statistical non-parametric mapping (SnPM), identified the specific region with SCP. Lesion size was associated with lateropulsion. The precentral gyrus, postcentral gyrus, inferior frontal gyrus, insula and subgyral parietal lobe of the right hemisphere seemed to be associated with the lateropulsion; however, after adjusting for lesion volume as a nuisance covariate, no lesion areas were associated with the SCP scores. The size of the right hemisphere lesion was the only factor most strongly associated with lateropulsion in patients with stroke. These results may be useful for planning rehabilitation strategies of restoring vertical posture and understanding the pathophysiology of lateropulsion in stroke patients.


2021 ◽  
pp. 1-10
Author(s):  
Theresa K. Haidl ◽  
Dennis M. Hedderich ◽  
Marlene Rosen ◽  
Nathalie Kaiser ◽  
Mauro Seves ◽  
...  

Abstract Background Childhood trauma (CT) is associated with an increased risk of mental health disorders; however, it is unknown whether this represents a diagnosis-specific risk factor for specific psychopathology mediated by structural brain changes. Our aim was to explore whether (i) a predictive CT pattern for transdiagnostic psychopathology exists, and whether (ii) CT can differentiate between distinct diagnosis-dependent psychopathology. Furthermore, we aimed to identify the association between CT, psychopathology and brain structure. Methods We used multivariate pattern analysis in data from 643 participants of the Personalised Prognostic Tools for Early Psychosis Management study (PRONIA), including healthy controls (HC), recent onset psychosis (ROP), recent onset depression (ROD), and patients clinically at high-risk for psychosis (CHR). Participants completed structured interviews and self-report measures including the Childhood Trauma Questionnaire, SCID diagnostic interview, BDI-II, PANSS, Schizophrenia Proneness Instrument, Structured Interview for Prodromal Symptoms and structural MRI, analyzed by voxel-based morphometry. Results (i) Patients and HC could be distinguished by their CT pattern with a reasonable precision [balanced accuracy of 71.2% (sensitivity = 72.1%, specificity = 70.4%, p ≤ 0.001]. (ii) Subdomains ‘emotional neglect’ and ‘emotional abuse’ were most predictive for CHR and ROP, while in ROD ‘physical abuse’ and ‘sexual abuse’ were most important. The CT pattern was significantly associated with the severity of depressive symptoms in ROD, ROP, and CHR, as well as with the PANSS total and negative domain scores in the CHR patients. No associations between group-separating CT patterns and brain structure were found. Conclusions These results indicate that CT poses a transdiagnostic risk factor for mental health disorders, possibly related to depressive symptoms. While differences in the quality of CT exposure exist, diagnostic differentiation was not possible suggesting a multi-factorial pathogenesis.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shahrzad Kharabian Masouleh ◽  
Simon B Eickhoff ◽  
Felix Hoffstaedter ◽  
Sarah Genon ◽  

Linking interindividual differences in psychological phenotype to variations in brain structure is an old dream for psychology and a crucial question for cognitive neurosciences. Yet, replicability of the previously-reported ‘structural brain behavior’ (SBB)-associations has been questioned, recently. Here, we conducted an empirical investigation, assessing replicability of SBB among heathy adults. For a wide range of psychological measures, the replicability of associations with gray matter volume was assessed. Our results revealed that among healthy individuals 1) finding an association between performance at standard psychological tests and brain morphology is relatively unlikely 2) significant associations, found using an exploratory approach, have overestimated effect sizes and 3) can hardly be replicated in an independent sample. After considering factors such as sample size and comparing our findings with more replicable SBB-associations in a clinical cohort and replicable associations between brain structure and non-psychological phenotype, we discuss the potential causes and consequences of these findings.


Adeptus ◽  
2018 ◽  
Author(s):  
Ludmiła Janion

„Let’s not be too eager about equality” – brain sex, heteronormativity, and the scientific mystiqueThe article analyses the role of brain sex in Polish public discourse of the last years. The authors of a popular book Brain Sex claim that differences between women and men stem from differences in the brain structure, and because of that they are universal and unchangeable; feminism is based on misrepresentation of science. This thesis was overtaken by right-wing journalists, as it gave scientific justification to conservative gender politics and contemplementarity – the gender ontology of the Catholic church. However, in the rightwing journalism a significant aspect of brain sex theory is silenced, namely, the claim that homo- and transsexuality result from disorders in brain development; they are unchangeable and should be accepted. Despite its conservative roots, brain sex was popularized in liberal media as well. The aura of science that accompanied this popular theory allowed to naturalize its anti-feminism and heteronormativity. This phenomenon is discussed on the basis of media activity of two Polish scientists who are popular both in right-wing and liberal media: Anna Grabowska and Jerzy Vetulani. Both present brain sex theory as objective, universally accepted truth, which is attacked in the name of the leftist ideology by ignorant activists who deny science. „Nie popadajmy w przesadę z tą równością” – płeć mózgu, heteronorma i mistyka naukowościArtykuł analizuje rolę płci mózgu w polskim dyskursie publicznym ostatnich lat. Autorzy niezwykle popularnej w Polsce książki Płeć mózgu twierdzą, że różnice między kobietami i mężczyznami wynikają z różnic w budowie mózgów, a przez to są uniwersalne i niezmienne, feminizm zaś jest oparty na fałszowaniu nauki. Teza ta została podchwycona przez prawicowych publicystów, ponieważ nadawała naukową legitymację konserwatywnej polityce płci oraz komplementaryzmowi – ontologii płci przyjętej przez Kościół katolicki. W prawicowym piśmiennictwie przemilcza się jednak istotny aspekt płci mózgu, mianowicie twierdzenie, że homo- i transseksualność wynikają z wad w rozwoju mózgu, są niezmienne i powinny być akceptowane. Mimo swoich konserwatywnych korzeni płeć mózgu była popularyzowana także w mediach liberalnych. Nimb naukowości, którym otaczany był popularny pogląd, pozwalał naturalizować związane z nim antyfeminizm i heteronormatywność. Zjawisko to omówione jest na podstawie działalności popularyzatorskiej dwojga naukowców, cieszących się popularnością zarówno w prawicowych, jak i liberalnych mediach: Anny Grabowskiej i Jerzego Vetulaniego. Oboje przedstawiali płeć mózgu jako obiektywną, powszechnie uznawaną naukową prawdę, z którą w imię lewicowej ideologii próbują walczyć nieakceptujący ustaleń nauki aktywiści.


2017 ◽  
Author(s):  
Christopher R Madan

Until recently, neuroimaging data for a research study needed to be collected within one’s own lab. However, when studying inter-individual differences in brain structure, a large sample of participants is necessary. Given the financial costs involved in collecting neuroimaging data from hundreds or thousands of participants, large-scale studies of brain morphology could previously only be conducted by well-funded laboratories with access to MRI facilities and to large samples of participants. With the advent of broad open-access data-sharing initiatives, this has recently changed–here the primary goal of the study is to collect large datasets to be shared, rather than sharing of the data as an afterthought. This paradigm shift is evident as increase in the pace of discovery, leading to a rapid rate of advances in our characterization of brain structure. The utility of open-access brain morphology data is numerous, ranging from observing novel patterns of age-related differences in subcortical structures to the development of more robust cortical parcellation atlases, with these advances being translatable to improved methods for characterizing clinical disorders (see Figure 1 for an illustration). Moreover, structural MRIs are generally more robust than functional MRIs, relative to potential artifacts and in being not task-dependent, resulting in large potential yields. While the benefits of open-access data have been discussed more broadly within the field of cognitive neuroscience elsewhere (Gilmore et al., 2017; Poldrack and Gorgolewski, 2014; Van Horn and Gazzaniga, 2013; Voytek, 2016), as well as in other fields (Ascoli et al., 2017; Choudhury et al., 2014; Davies et al., 2017), the current paper is focused specifically on the implications of open data to brain morphology research.


Author(s):  
J.B. Colby ◽  
E.D. O'Hare ◽  
J.E. Bramen ◽  
E.R. Sowell

Author(s):  
Stefanie C. Bodison ◽  
John B. Colby ◽  
Elizabeth R. Sowell

Sign in / Sign up

Export Citation Format

Share Document