scholarly journals Neural correlates of safe driving performance: An fMRI study featuring a pedestrian-rich simulator environment

2021 ◽  
Author(s):  
Kentaro Oba ◽  
Koji Hamada ◽  
Azumi Tanabe-Ishibashi ◽  
Fumihiko Murase ◽  
Masaaki Hirose ◽  
...  

Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not place pedestrians in the simulator environment. In this fMRI study, we simulated a pedestrian-rich environment to explore the neural correlates of three types of safe driving performance: driving accuracy, the braking response to a preceding car, and the braking response to a crossing pedestrian. Activation of the bilateral frontoparietal control network predicted high driving accuracy. On the other hand, activation of the left posterior and right anterior superior temporal sulci preceding a sudden pedestrian crossing predicted a slow braking response. The results suggest the involvement of different cognitive processes in different components of driving safety: the facilitatory effect of maintained attention on driving accuracy and the distracting effect of social–cognitive processes on the braking response to pedestrians.

Author(s):  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
José J. Castro-Torres ◽  
José R. Jiménez ◽  
Rosario G. Anera

Cannabis is the most widely used illegal drug in the world. Limited information about the effects of cannabis on visual function is available, and more detail about the possible impact of visual effects on car driving is required. This study investigated the effects of smoking cannabis on vision and driving performance, and whether these effects are correlated. Twenty drivers and occasional users were included (mean (SE) age, 23.3 (1.0) years; five women). Vision and simulated driving performance were evaluated in a baseline session and after smoking cannabis. Under the influence of cannabis, certain visual functions such as visual acuity (p < 0.001), contrast sensitivity (p = 0.004) and stereoacuity (far, p < 0.001; near, p = 0.013) worsened. In addition, there was an overall deterioration of driving performance, with the task of keeping the vehicle in the lane proving more difficult (p < 0.05). A correlation analysis showed significant associations between driving performance and visual function. Thus, the strongest correlations were found between the distance driven onto the shoulder and stereoacuity, for near (ρ = 0.504; p = 0.001) and far distances (ρ = 0.408; p = 0.011). This study provides the first evidence to show that the visual effects of cannabis could impact driving performance, compromising driving safety. The results indicate that information and awareness campaigns are essential for reducing the incidence of driving under the influence of cannabis.


2016 ◽  
Vol 124 (6) ◽  
pp. 1396-1403 ◽  
Author(s):  
Julie L. Huffmyer ◽  
Matthew Moncrief ◽  
Jessica A. Tashjian ◽  
Amanda M. Kleiman ◽  
David C. Scalzo ◽  
...  

Abstract Background Residency training requires work in clinical settings for extended periods of time, resulting in altered sleep patterns, sleep deprivation, and potentially deleterious effects on safe performance of daily activities, including driving a motor vehicle. Methods Twenty-nine anesthesiology resident physicians in postgraduate year 2 to 4 drove for 55 min in the Virginia Driving Safety Laboratory using the Driver Guidance System (MBFARR, LLC, USA). Two driving simulator sessions were conducted, one experimental session immediately after the final shift of six consecutive night shifts and one control session at the beginning of a normal day shift (not after call). Both sessions were conducted at 8:00 am. Psychomotor vigilance task testing was employed to evaluate reaction time and lapses in attention. Results After six consecutive night shifts, residents experienced significantly impaired control of all the driving variables including speed, lane position, throttle, and steering. They were also more likely to be involved in collisions. After six consecutive night shifts, residents had a significant increase in reaction times (281.1 vs. 298.5 ms; P = 0.001) and had a significant increase in the number of both minor (0.85 vs. 1.88; P = 0.01) and major lapses (0.00 vs. 0.31; P = 0.008) in attention. Conclusions Resident physicians have greater difficulty controlling speed and driving performance in the driving simulator after six consecutive night shifts. Reaction times are also increased with emphasis on increases in minor and major lapses in attention after six consecutive night shifts.


2019 ◽  
Vol 31 (6) ◽  
pp. 900-912 ◽  
Author(s):  
Lieke Heil ◽  
Olympia Colizoli ◽  
Egbert Hartstra ◽  
Johan Kwisthout ◽  
Stan van Pelt ◽  
...  

When seeing people perform actions, we are able to quickly predict the action's outcomes. These predictions are not solely based on the observed actions themselves but utilize our prior knowledge of others. It has been suggested that observed outcomes that are not in line with these predictions result in prediction errors, which require additional processing to be integrated or updated. However, there is no consensus on whether this is indeed the case for the kind of high-level social–cognitive processes involved in action observation. In this fMRI study, we investigated whether observation of unexpected outcomes causes additional activation in line with the processing of prediction errors and, if so, whether this activation overlaps with activation in brain areas typically associated with social–cognitive processes. In the first part of the experiment, participants watched animated movies of two people playing a bowling game, one experienced and one novice player. In cases where the player's score was higher or lower than expected based on their skill level, there was increased BOLD activity in areas that were also activated during a theory of mind task that participants performed in the second part of the experiment. These findings are discussed in the light of different theoretical accounts of human social–cognitive processing.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Alison Blane ◽  
Hoe C. Lee ◽  
Torbjörn Falkmer ◽  
Tania Dukic Willstrand

Driving is an important activity of daily living, which is increasingly relied upon as the population ages. It has been well-established that cognitive processes decline following a stroke and these processes may influence driving performance. There is much debate on the use of off-road neurological assessments and driving simulators as tools to predict driving performance; however, the majority of research uses unlicensed poststroke drivers, making the comparability of poststroke adults to that of a control group difficult. It stands to reason that in order to determine whether simulators and cognitive assessments can accurately assess driving performance, the baseline should be set by licenced drivers. Therefore, the aim of this study was to assess differences in cognitive ability and driving simulator performance in licensed community-dwelling poststroke drivers and controls. Two groups of licensed drivers (37 poststroke and 43 controls) were assessed using several cognitive tasks and using a driving simulator. The poststroke adults exhibited poorer cognitive ability; however, there were no differences in simulator performance between groups except that the poststroke drivers demonstrated less variability in driver headway. The application of these results as a prescreening toolbox for poststroke drivers is discussed.


Motor Control ◽  
2021 ◽  
Vol 25 (1) ◽  
pp. 1-18
Author(s):  
Faezeh Mohammadi Sanjani ◽  
Abbas Bahram ◽  
Moslem Bahmani ◽  
Mina Arvin ◽  
John van der Kamp

It has been shown that texting degrades driving performance, but the extent to which this is mediated by the driver’s age and postural stability has not been addressed. Hence, the present study examined the effects of texting, sitting surface stability, and balance training in young and older adults’ driving performance. Fifteen young (mean age = 24.3 years) and 13 older (mean age = 62.8 years) participants were tested in a driving simulator with and without texting on a smartphone and while sitting on a stable or unstable surface (i.e., a plastic wobble board), before and after a 30-min sitting balance training. Analyses of variance showed that texting deteriorated driving performance but irrespective of sitting surface stability. Balance training decreased the negative effects of texting on driving, especially in older adults. Perceived workload increased when drivers were texting, and balance training reduced perceived workload. Perceived workload was higher while sitting on the unstable surface, but less so after balance training. Path analyses showed that the effects on driving performance and perceived workload were (indirectly) associated with changes in postural stability (i.e., postural sway). The study confirms that texting threatens safe driving performance by challenging postural stability, especially in older adults. The study also suggests that it is important to further investigate the role balance training can play in reducing these negative effects of texting.


Author(s):  
Giandomenico Caruso ◽  
Daniele Ruscio ◽  
Dedy Ariansyah ◽  
Monica Bordegoni

The advancement of in-vehicle technology for driving safety has considerably improved. Current Advanced Driver-Assistance Systems (ADAS) make road safer by alerting the driver, through visual, auditory, and haptic signals about dangerous driving situations, and consequently, preventing possible collisions. However, in some circumstances the driver can fail to properly respond to the alert since human cognition systems can be influenced by the driving context. Driving simulation can help evaluating this aspect since it is possible to reproduce different ADAS in safe driving conditions. However, driving simulation alone does not provide information about how the change in driver’s workload affects the interaction of the driver with ADAS. This paper presents a driving simulator system integrating physiological sensors that acquire heart’s activity, blood volume pulse, respiration rate, and skin conductance parameters. Through a specific processing of these measurements, it is possible to measure different cognitive processes that contribute to the change of driver’s workload while using ADAS, in different driving contexts. The preliminary studies conducted in this research show the effectiveness of this system and provide guidelines for the future acquisition and the treatment of the physiological data to assess ADAS workload.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Stephanie Yamin ◽  
Arne Stinchcombe ◽  
Sylvain Gagnon

Driving is a multifactorial behaviour drawing on multiple cognitive, sensory, and physical systems. Dementia is a progressive and degenerative neurological condition that impacts the cognitive processes necessary for safe driving. While a number of studies have examined driving among individuals with Alzheimer’s disease, less is known about the impact of Dementia with Lewy Bodies (DLB) on driving safety. The present study compared simulated driving performance of 15 older drivers with mild DLB with that of 21 neurologically healthy control drivers. DLB drivers showed poorer performance on all indicators of simulated driving including an increased number of collisions in the simulator and poorer composite indicators of overall driving performance. A measure of global cognitive function (i.e., the Mini Mental State Exam) was found to be related to the overall driving performance. In addition, measures of attention (i.e., Useful Field of View, UFOV) and space processing (Visual Object and Space Perception, VOSP, Test) correlated significantly with a rater’s assessment of driving performance.


2006 ◽  
Author(s):  
Arthur Aron ◽  
Helen Fisher ◽  
Greg Strong ◽  
Deb Mashek ◽  
HaiFang Li ◽  
...  

2013 ◽  
Author(s):  
Antonello Pellicano ◽  
Houpand Horoufchin ◽  
Harshal Patel ◽  
Iring Koch ◽  
Ferdinand Binkofski

Sign in / Sign up

Export Citation Format

Share Document