scholarly journals Effects of Smoking Cannabis on Visual Function and Driving Performance. A Driving-Simulator Based Study

Author(s):  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
José J. Castro-Torres ◽  
José R. Jiménez ◽  
Rosario G. Anera

Cannabis is the most widely used illegal drug in the world. Limited information about the effects of cannabis on visual function is available, and more detail about the possible impact of visual effects on car driving is required. This study investigated the effects of smoking cannabis on vision and driving performance, and whether these effects are correlated. Twenty drivers and occasional users were included (mean (SE) age, 23.3 (1.0) years; five women). Vision and simulated driving performance were evaluated in a baseline session and after smoking cannabis. Under the influence of cannabis, certain visual functions such as visual acuity (p < 0.001), contrast sensitivity (p = 0.004) and stereoacuity (far, p < 0.001; near, p = 0.013) worsened. In addition, there was an overall deterioration of driving performance, with the task of keeping the vehicle in the lane proving more difficult (p < 0.05). A correlation analysis showed significant associations between driving performance and visual function. Thus, the strongest correlations were found between the distance driven onto the shoulder and stereoacuity, for near (ρ = 0.504; p = 0.001) and far distances (ρ = 0.408; p = 0.011). This study provides the first evidence to show that the visual effects of cannabis could impact driving performance, compromising driving safety. The results indicate that information and awareness campaigns are essential for reducing the incidence of driving under the influence of cannabis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
Miriam Casares-López ◽  
José R. Jiménez ◽  
Rosario G. Anera

AbstractCannabis is one of the most used drugs of abuse in the world. The objective of this study was to analyze the effects of smoking cannabis on vision and to relate these to those perceived by the user. Thirty-one cannabis users participated in this study. Visual function assessment was carried out in a baseline session as well as after smoking cannabis. We evaluated static visual acuity, contrast sensitivity, stereoacuity, accommodative response, straylight, night-vision disturbances (halos) and pupil size. The participants were also divided into two groups depending on whether they perceived their vision to have worsened after smoking cannabis. A logistic regression analysis was employed to identify which visual test could best predict self-perceived visual effects. The study found that smoking cannabis has significant adverse effects on all the visual parameters analyzed (p < 0.05). Self-perceived visual quality results revealed that about two thirds of the sample think that smoking cannabis impairs their vision. Contrast sensitivity, specifically for the spatial frequency 18 cpd, was identified as the only visual parameter significantly associated with self-perceived visual quality (Odds Ratio: 1.135; p = 0.040). Smoking cannabis is associated with negative effects on visual function. Self-perceived visual quality after smoking cannabis could be related to impaired contrast sensitivity.


Author(s):  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
Miriam Casares-López ◽  
José J. Castro-Torres ◽  
Luis Jiménez del Barco ◽  
...  

Aging leads to impaired visual function, which can affect driving—a very visually demanding task—and has a direct impact on an individual’s quality of life if their license is withdrawn. This study examined the associations between age-related vision changes and simulated driving performance. To this end, we attempted to determine the most significant visual parameters in terms of evaluating elderly drivers’ eyesight. Twenty-one younger drivers (aged 25–40) were compared to 21 older drivers (aged 56–71). Study participants were assessed for visual acuity, contrast sensitivity, halos, and intraocular straylight, which causes veiling luminance on the retina and degrades vision. Driving performance was evaluated using a driving simulator. The relationships between simulated driving performance and the visual parameters tested were examined with correlation analyses and linear regression models. Older drivers presented impairment in most visual parameters (p < 0.05), with straylight being the most significantly affected (we also measured the associated effect size). Older drivers performed significantly worse (p < 0.05) in the simulator test, with a markedly lower performance in lane stability. The results of the multiple linear regression model evidenced that intraocular straylight is the best visual parameter for predicting simulated driving performance (R2 = 0.513). Older drivers have shown significantly poorer results in several aspects of visual function, as well as difficulties in driving simulator performance. Our results suggest that the non-standardized straylight evaluation could be significant in driver assessments, especially at the onset of age-related vision changes.


2016 ◽  
Vol 124 (6) ◽  
pp. 1396-1403 ◽  
Author(s):  
Julie L. Huffmyer ◽  
Matthew Moncrief ◽  
Jessica A. Tashjian ◽  
Amanda M. Kleiman ◽  
David C. Scalzo ◽  
...  

Abstract Background Residency training requires work in clinical settings for extended periods of time, resulting in altered sleep patterns, sleep deprivation, and potentially deleterious effects on safe performance of daily activities, including driving a motor vehicle. Methods Twenty-nine anesthesiology resident physicians in postgraduate year 2 to 4 drove for 55 min in the Virginia Driving Safety Laboratory using the Driver Guidance System (MBFARR, LLC, USA). Two driving simulator sessions were conducted, one experimental session immediately after the final shift of six consecutive night shifts and one control session at the beginning of a normal day shift (not after call). Both sessions were conducted at 8:00 am. Psychomotor vigilance task testing was employed to evaluate reaction time and lapses in attention. Results After six consecutive night shifts, residents experienced significantly impaired control of all the driving variables including speed, lane position, throttle, and steering. They were also more likely to be involved in collisions. After six consecutive night shifts, residents had a significant increase in reaction times (281.1 vs. 298.5 ms; P = 0.001) and had a significant increase in the number of both minor (0.85 vs. 1.88; P = 0.01) and major lapses (0.00 vs. 0.31; P = 0.008) in attention. Conclusions Resident physicians have greater difficulty controlling speed and driving performance in the driving simulator after six consecutive night shifts. Reaction times are also increased with emphasis on increases in minor and major lapses in attention after six consecutive night shifts.


2021 ◽  
Author(s):  
Kentaro Oba ◽  
Koji Hamada ◽  
Azumi Tanabe-Ishibashi ◽  
Fumihiko Murase ◽  
Masaaki Hirose ◽  
...  

Distracted attention is considered responsible for most car accidents, and many functional magnetic resonance imaging (fMRI) researchers have addressed its neural correlates using a car-driving simulator. Previous studies, however, have not directly addressed safe driving performance and did not place pedestrians in the simulator environment. In this fMRI study, we simulated a pedestrian-rich environment to explore the neural correlates of three types of safe driving performance: driving accuracy, the braking response to a preceding car, and the braking response to a crossing pedestrian. Activation of the bilateral frontoparietal control network predicted high driving accuracy. On the other hand, activation of the left posterior and right anterior superior temporal sulci preceding a sudden pedestrian crossing predicted a slow braking response. The results suggest the involvement of different cognitive processes in different components of driving safety: the facilitatory effect of maintained attention on driving accuracy and the distracting effect of social–cognitive processes on the braking response to pedestrians.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Martino ◽  
José Juan Castro-Torres ◽  
Miriam Casares-López ◽  
Sonia Ortiz-Peregrina ◽  
Carolina Ortiz ◽  
...  

AbstractIn this study, we assessed the influence of moderate alcohol intake on binocular vision, vergence system and simulated driving performance by analyzing the interactions between visual deterioration and driving variables. Thirty young healthy subjects were recruited. For the analysis, we measured: visual function (visual acuity and stereoacuity), phorias and fusional reserves. Also, we checked Sheard’s and Percival’s criteria at near and far. The accommodative convergence/accommodation (AC/A) ratio was calculated and vergence facility was also obtained at near. A driving simulator was used to assess driving performance under natural conditions and after alcohol consumption with a breath alcohol content of 0.40 mg/l. Alcohol intake significantly reduced binocular visual performance and vergence function, except for vertical phorias, horizontal phoria at near and Sheard’s and Percival’s criteria at near. Driving performance parameters also presented a statistically significant deterioration after alcohol consumption. A statistically significant correlation was found between the deterioration in overall visual function and overall driving performance, highlighting the influence of the visual deterioration on the driving performance. Moderate alcohol consumption impairs binocular visual and simulated driving performances, implying a greater safety hazard. In addition, deteriorations in binocular visual function and vergence correlated with simulated driving impairment, which indicates that the deterioration of binocular vision due to alcohol consumption affects driving, thus reducing road safety.


Author(s):  
Huiying Wen ◽  
N. N. Sze ◽  
Qiang Zeng ◽  
Sangen Hu

This paper presents the study on the association between in-vehicle music listening, physiological and psychological response, and driving performance, using the driving simulator approach, with which personality (temperament) was considered. The performance indicators considered were the standard deviation of speed, lane crossing frequency, perceived mental workload, and mean and variability of heart rate. Additionally, effects of the presence of music and music genre (light music versus rock music) were considered. Twenty participants of different personalities (in particular five, four, seven, and four being choleric, sanguine, phlegmatic, and melancholic, respectively) completed a total of 60 driving simulator tests. Results of mixed analysis of variance (M-ANOVA) indicated that the effects of music genre and driver character on driving performance were significant. The arousal level perceived mental workload, standard deviation of speed, and frequency of lane crossing were higher when driving under the influence of rock music than that when driving under the influence of light music or an absence of music. Additionally, phlegmatic drivers generally had lower arousal levels and choleric drivers had a greater mental workload and were more likely distracted by music listening. Such findings should imply the development of cost-effective driver education, training, and management measures that could mitigate driver distraction. Therefore, the safety awareness and safety performance of drivers could be enhanced.


Author(s):  
Alejandro A. Arca ◽  
Kaitlin M. Stanford ◽  
Mustapha Mouloua

The current study was designed to empirically examine the effects of individual differences in attention and memory deficits on driver distraction. Forty-eight participants consisting of 37 non-ADHD and 11 ADHD drivers were tested in a medium fidelity GE-ISIM driving simulator. All participants took part in a series of simulated driving scenarios involving both high and low traffic conditions in conjunction with completing a 20-Questions task either by text- message or phone-call. Measures of UFOV, simulated driving, heart rate variability, and subjective (NASA TLX) workload performance were recorded for each of the experimental tasks. It was hypothesized that ADHD diagnosis, type of cellular distraction, and traffic density would affect driving performance as measured by driving performance, workload assessment, and physiological measures. Preliminary results indicated that ADHD diagnosis, type of cellular distraction, and traffic density affected the performance of the secondary task. These results provide further evidence for the deleterious effects of cellphone use on driver distraction, especially for drivers who are diagnosed with attention-deficit and memory capacity deficits. Theoretical and practical implications are discussed, and directions for future research are also presented.


2021 ◽  
Vol 79 (4) ◽  
pp. 1575-1587
Author(s):  
Zhouyuan Peng ◽  
Hiroyuki Nishimoto ◽  
Ayae Kinoshita

Background: With the rapid aging of the population, the issue of driving by dementia patients has been causing increasing concern worldwide. Objective: To investigate the driving difficulties faced by senior drivers with cognitive impairment and identify the specific neuropsychological tests that can reflect specific domains of driving maneuvers. Methods: Senior drivers with cognitive impairment were investigated. Neuropsychological tests and a questionnaire on demographic and driving characteristics were administered. Driving simulator tests were used to quantify participants’ driving errors in various domains of driving. Results: Of the 47 participants, 23 current drivers, though they had better cognitive functions than 24 retired drivers, were found to have impaired driving performance in the domains of Reaction, Starting and stopping, Signaling, and Overall (wayfinding and accidents). The parameters of Reaction were significantly related to the diagnosis, and the scores of MMSE, TMT-A, and TMT-B. As regards details of the driving errors, “Sudden braking” was associated with the scores of MMSE (ρ= –0.707, p < 0.01), BDT (ρ= –0.560, p < 0.05), and ADAS (ρ= 0.758, p < 0.01), “Forgetting to use turn signals” with the TMT-B score (ρ= 0.608, p < 0.05), “Centerline crossings” with the scores of MMSE (ρ= –0.582, p < 0.05) and ADAS (ρ= 0.538, p < 0.05), and “Going the wrong way” was correlated with the score of CDT (ρ= –0.624, p < 0.01). Conclusion: Different neuropsychological factors serve as predictors of different specific driving maneuvers segmented from driving performance.


Sign in / Sign up

Export Citation Format

Share Document