scholarly journals Who Are Virtual Reality Headset Owners? A Survey and Comparison of Headset Owners and Non-Owners

2021 ◽  
Author(s):  
Jonathan Kelly ◽  
Lucia Cherep ◽  
Alex Lim ◽  
Taylor Doty ◽  
Stephen B. Gilbert

The number of people who own a virtual reality (VR) head-mounted display (HMD) has reached a point where researchers can readily recruit HMD owners to participate remotely using their own equipment. However, HMD owners recruited online may differ from the university community members who typically participate in VR research. HMD owners (n=220) and non-owners (n=282) were recruited through two online work sites---Amazon's Mechanical Turk and Prolific---and an undergraduate participant pool. Participants completed a survey in which they provided demographic information and completed measures of HMD use, video game use, spatial ability, and motion sickness susceptibility. In the context of the populations sampled, the results provide 1) a characterization of HMD owners, 2) a snapshot of the most commonly owned HMDs, 3) a comparison between HMD owners and non-owners, and 4) a comparison among online workers and undergraduates. Significant gender differences were found: men reported lower motion sickness susceptibility and more video game hours than women, and men outperformed women on spatial tasks. Men comprised a greater proportion of HMD owners than non-owners, but after accounting for this imbalance, HMD owners did not differ appreciably from non-owners. Comparing across recruitment platform, male undergraduates outperformed male online workers on spatial tests, and female undergraduates played fewer video game hours than female online workers. The data removal rate was higher from Amazon compared to Prolific, possibly reflecting greater dishonesty. These results provide a description of HMD users that can inform researchers recruiting remote participants through online work sites. These results also signal a need for caution when comparing in-person VR research that primarily enrolls undergraduates to online VR research that enrolls online workers.

2020 ◽  
Vol 12 (6) ◽  
pp. 33-47
Author(s):  
YOSHIHARA Tsuyoshi ◽  
FUJITA Satoshi

In this paper, we propose a method to realize a virtual reality MMOG (Massively Multiplayer Online Video Game) with ultra-low latency. The basic idea of the proposed method is to introduce a layer consisting of several fog nodes between clients and cloud server to offload a part of the rendering task which is conducted by the cloud server in conventional cloud games. We examine three techniques to reduce the latency in such a fog-assisted cloud game: 1) To maintain the consistency of the virtual game space, collision detection of virtual objects is conducted by the cloud server in a centralized manner; 2) To reflect subtle changes of the line of sight to the 3D game view, each client is assigned to a fog node and the head motion of the player acquired through HMD (Head-Mounted Display) is directly sent to the corresponding fog node; and 3) To offload a part of the rendering task, we separate the rendering of the background view from that of the foreground view, and migrate the former to other nodes including the cloud server. The performance of the proposed method is evaluated by experiments with an AWS-based prototype system. It is confirmed that the proposed techniques achieve the latency of 32.3 ms, which is 66 % faster than the conventional systems.


2021 ◽  
Vol 10 (5) ◽  
pp. 3546-3551
Author(s):  
Tamanna Nurai

Cybersickness continues to become a negative consequence that degrades the interface for users of virtual worlds created for Virtual Reality (VR) users. There are various abnormalities that might cause quantifiable changes in body awareness when donning an Head Mounted Display (HMD) in a Virtual Environment (VE). VR headsets do provide VE that matches the actual world and allows users to have a range of experiences. Motion sickness and simulation sickness performance gives self-report assessments of cybersickness with VEs. In this study a simulator sickness questionnaire is being used to measure the aftereffects of the virtual environment. This research aims to answer if Immersive VR induce cybersickness and impact equilibrium coordination. The present research is formed as a cross-sectional observational analysis. According to the selection criteria, a total of 40 subjects would be recruited from AVBRH, Sawangi Meghe for the research. With intervention being used the experiment lasted 6 months. Simulator sickness questionnaire is used to evaluate the after-effects of a virtual environment. It holds a single period for measuring motion sickness and evaluation of equilibrium tests were done twice at exit and after 10 mins. Virtual reality being used in video games is still in its development. Integrating gameplay action into the VR experience will necessitate a significant amount of study and development. The study has evaluated if Immersive VR induce cybersickness and impact equilibrium coordination. To measure cybersickness, numerous scales have been developed. The essence of cybersickness has been revealed owing to work on motion sickness in a simulated system.


2020 ◽  
Vol 1 ◽  
Author(s):  
Christopher Curry ◽  
Nicolette Peterson ◽  
Ruixuan Li ◽  
Thomas A. Stoffregen

Motion sickness is common in virtual environments. The risk of motion sickness varies widely between individuals and across situations. The subjective experience of motion sickness often is preceded by distinctive patterns of movement in the control of head and body posture. Previous research has documented reliable sex differences in the kinematics of postural activity, as well as reliable differences in postural activity between participants who were in control of a virtual vehicle and participants who were not. We asked whether postural precursors of motion sickness would simultaneously be influenced by individual and situational factors. We analyzed movement of the head and torso while seated participants were exposed to a driving video game presented through a head-mounted display. Half of the participants were women, and half were men. Using a yoked-control design, half of the participants controlled the virtual vehicle (Drivers), whereas half watched previously recorded vehicle trajectories (Passengers). The maximum exposure duration was 15 min, but participants were instructed to discontinue participation immediately if they experienced any symptoms of motion sickness, however mild. We analyzed movement kinematics not only in terms of sex and vehicle control but also in terms of participants who did or did not report motion sickness. Movement differed between Drivers and Passengers, in terms of both the spatial magnitude and multifractality of movement. The spatial magnitude of movement was simultaneously influenced by sex (men vs. women) and vehicle control (Drivers vs. Passengers). In addition, in statistically significant interactions, we identified postural precursors of motion sickness that differed between Drivers and Passengers and, separately, between Drivers and Passengers as a function of sex. The results are consistent with a prediction of the postural instability theory of motion sickness etiology and shed new light on the multifactorial origins of postural precursors of motion sickness in virtual environments.


2018 ◽  
Author(s):  
Yoshihito Masuoka ◽  
Hiroyuki Morikawa ◽  
Takashi Kawai ◽  
Toshio Nakagohri

BACKGROUND Virtual reality (VR) technology has started to gain attention as a form of surgical support in medical settings. Likewise, the widespread use of smartphones has resulted in the development of various medical applications; for example, Google Cardboard, which can be used to build simple head-mounted displays (HMDs). However, because of the absence of observed and reported outcomes of the use of three-dimensional (3D) organ models in relevant environments, we have yet to determine the effects of or issues with the use of such VR technology. OBJECTIVE The aim of this paper was to study the issues that arise while observing a 3D model of an organ that is created based on an actual surgical case through the use of a smartphone-based simple HMD. Upon completion, we evaluated and gathered feedback on the performance and usability of the simple observation environment we had created. METHODS We downloaded our data to a smartphone (Galaxy S6; Samsung, Seoul, Korea) and created a simple HMD system using Google Cardboard (Google). A total of 17 medical students performed 2 experiments: an observation conducted by a single observer and another one carried out by multiple observers using a simple HMD. Afterward, they assessed the results by responding to a questionnaire survey. RESULTS We received a largely favorable response in the evaluation of the dissection model, but also a low score because of visually induced motion sickness and eye fatigue. In an introspective report on simultaneous observations made by multiple observers, positive opinions indicated clear image quality and shared understanding, but displeasure caused by visually induced motion sickness, eye fatigue, and hardware problems was also expressed. CONCLUSIONS We established a simple system that enables multiple persons to observe a 3D model. Although the observation conducted by multiple observers was successful, problems likely arose because of poor smartphone performance. Therefore, smartphone performance improvement may be a key factor in establishing a low-cost and user-friendly 3D observation environment.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6552
Author(s):  
José Varela-Aldás ◽  
Guillermo Palacios-Navarro ◽  
Rebecca Amariglio ◽  
Iván García-Magariño

Virtual Reality (VR) has had significant advances in rehabilitation, due to the gamification of cognitive activities that facilitate treatment. On the other hand, Immersive Virtual Reality (IVR) produces outstanding results due to the interactive features with the user. This work introduces a VR application for memory rehabilitation by walking through a maze and using the Oculus Go head-mounted display (HMD) technology. The mechanics of the game require memorizing geometric shapes while the player progresses in two modes, autonomous or manual, with two levels of difficulty depending on the number of elements to remember. The application is developed in the Unity 3D video game engine considering the optimization of computational resources to improve the performance in the processing and maintaining adequate benefits for the user, while the generated data is stored and sent to a remote server. The maze task was assessed with 29 subjects in a controlled environment. The obtained results show a significant correlation between participants’ response accuracy in both the maze task and a face–pair test. Thus, the proposed task is able to perform memory assessments.


2019 ◽  
Vol 19 (1) ◽  
pp. 207-217 ◽  
Author(s):  
Julia A. Zeroth ◽  
Lynnda M. Dahlquist ◽  
Emily C. Foxen-Craft

Abstract Background and aims The present study was designed to evaluate the relative efficacy of two video game display modalities – virtual reality (VR) assisted video game distraction, in which the game is presented via a VR head-mounted display (HMD) helmet, versus standard video game distraction, in which the game is projected on a television – and to determine whether environmental context (quiet versus noisy) moderates the relative efficacy of the two display modalities in reducing cold pressor pain in healthy college students. Methods Undergraduate students (n=164) were stratified by sex and self-reported video game skill and were randomly assigned to a quiet or a noisy environment. Participants then underwent three cold pressor trials consisting of one baseline followed by two distraction trials differing in display modality (i.e. VR-assisted or standard distraction) in counter-balanced order. Results Participants experienced improvement in pain tolerance from baseline to distraction in both display modality conditions (p<0.001, partial η2=0.41), and there was a trend toward greater improvement in pain tolerance from baseline to distraction when using the VR HMD helmet than during standard video game distraction (p=0.057, partial η2=0.02). Participants rated pain as more intense when experienced with concurrent experimental background noise (p=0.047, partial η2=0.02). Pain tolerance was not influenced by the presence or absence of background noise, and there was not a significant interaction between display modality and noise condition. Though exploratory sex analyses demonstrated a significant three-way interaction between noise condition, sex, and display modality on pain intensity (p=0.040, partial η2=0.040), follow-up post-hoc analyses conducted for males and females separately did not reveal significant differences in pain intensity based on the interaction between noise condition and display modality. Conclusions As expected, video game distraction both with and without an HMD helmet increased pain tolerance; however, the two display modalities only marginally differed in efficacy within the population under study. The effect of auditory background noise on pain was mixed; while pain tolerance did not vary as a function of the presence or absence of background noise, the addition of noise increased pain intensity ratings. The interaction between participant sex, noise condition, and distraction modality on pain intensity trended toward significance but would require replication in future research. Implications Results suggest that video game distraction via HMD helmet may be superior to standard video game distraction for increasing pain tolerance, though further research is required to replicate the trending findings observed in this study. Though it does not appear that background noise significantly impacted the relative efficacy of the two different video game display modalities, the presence of noise does appear to alter the pain response through amplified pain intensity ratings. Further research utilizing more sophisticated VR technology and clinically relevant background auditory stimuli is necessary in order to better understand the impact of these findings in real-world settings and to test the clinical utility of VR technology for pain management relative to standard video game distraction.


2020 ◽  
Vol 12 (12) ◽  
pp. 478-486
Author(s):  
Nigel Rees ◽  
Neil Vaughan ◽  
Thomas W Day ◽  
Keith Dorrington ◽  
Lloyd Rees ◽  
...  

Background: Virtual reality (VR) technology is emerging as a powerful tool in medical training and has potential benefits for paramedic education. Aim: The aim of this paper is to report the development of ParaVR, which uses VR to maintain paramedics' skills. Methods: Computer scientists at the University of Chester and the Welsh Ambulance Services NHS Trust (WAST) developed ParaVR in four stages: identifying requirements and specifications; alpha version development; beta version development; and management—development of software, further funding and commercialisation. Results: Needle cricothyrotomy and needle thoracostomy emerged as candidates for the prototype ParaVR. The Oculus Rift head-mounted display was combined with Novint Falcon haptic device and a virtual environment crafted using 3D modelling software, which was ported to the Oculus Go virtual reality headset and the Google Cardboard VR platform. Conclusion: VR is an emerging educational tool with the potential to enhance paramedic skills development and maintenance. The ParaVR programme is the first step in the authors' development, testing and scaling up of this technology.


2000 ◽  
Author(s):  
Ricardo Moraes ◽  
David Nicholson ◽  
Eduardo Divo

Abstract A prototype system is described for visualization of automotive crash. The system is based on integrating two tools: (a) Finite Element Analysis (FEA) and (b) Virtual Reality Visualization (VRV). The prototype VRV system, recently developed by DUAL Incorporated of Lake Mary, FL in partnership with the University of Central Florida (UCF), consists of a PC-level graphics workstation, a head mounted display, motion trackers, a multi-degree of freedom mouse, drivers and a software toolkit, all of which have been established at DUAL and UCF.


Sign in / Sign up

Export Citation Format

Share Document