scholarly journals Detaching from influence in decision-making: objective and subjective freedom of choice

2020 ◽  
Author(s):  
Gwydion Williams ◽  
Patrick Haggard ◽  
Lucie Charles

How much can people resist influence in choice? In this study, we explored participants’ abilities to voluntarily detach from irrelevant information to make free choices. Participants saw random-dot-motion stimuli and a colour-cue indicating whether their response should be congruent or incongruent with the direction of dot-motion. Importantly, in a third condition, the colour-cue instructed participants to detach from dot-motion direction and to freely choose how to respond. After each trial, participants rated how much they felt their decision was influenced by the stimulus. Our results showed that participants conflated opposition and independence: responses incongruent with the stimulus were systematically associated with a greater sense of freedom and detachment, whether these responses were instructed or made freely. Further, this effect seemed stronger in participants who tended to oppose the stimulus more frequently. Taken together, these results suggest that feelings of freedom rely on opposing suggestion and breaking from our habits.

2012 ◽  
Vol 108 (11) ◽  
pp. 2912-2930 ◽  
Author(s):  
David Thura ◽  
Julie Beauregard-Racine ◽  
Charles-William Fradet ◽  
Paul Cisek

It is often suggested that decisions are made when accumulated sensory information reaches a fixed accuracy criterion. This is supported by many studies showing a gradual build up of neural activity to a threshold. However, the proposal that this build up is caused by sensory accumulation is challenged by findings that decisions are based on information from a time window much shorter than the build-up process. Here, we propose that in natural conditions where the environment can suddenly change, the policy that maximizes reward rate is to estimate evidence by accumulating only novel information and then compare the result to a decreasing accuracy criterion. We suggest that the brain approximates this policy by multiplying an estimate of sensory evidence with a motor-related urgency signal and that the latter is primarily responsible for neural activity build up. We support this hypothesis using human behavioral data from a modified random-dot motion task in which motion coherence changes during each trial.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anne Löffler ◽  
Anastasia Sylaidi ◽  
Zafeirios Fountas ◽  
Patrick Haggard

AbstractChanges of Mind are a striking example of our ability to flexibly reverse decisions and change our own actions. Previous studies largely focused on Changes of Mind in decisions about perceptual information. Here we report reversals of decisions that require integrating multiple classes of information: 1) Perceptual evidence, 2) higher-order, voluntary intentions, and 3) motor costs. In an adapted version of the random-dot motion task, participants moved to a target that matched both the external (exogenous) evidence about dot-motion direction and a preceding internally-generated (endogenous) intention about which colour to paint the dots. Movement trajectories revealed whether and when participants changed their mind about the dot-motion direction, or additionally changed their mind about which colour to choose. Our results show that decision reversals about colour intentions are less frequent in participants with stronger intentions (Exp. 1) and when motor costs of intention pursuit are lower (Exp. 2). We further show that these findings can be explained by a hierarchical, multimodal Attractor Network Model that continuously integrates higher-order voluntary intentions with perceptual evidence and motor costs. Our model thus provides a unifying framework in which voluntary actions emerge from a dynamic combination of internal action tendencies and external environmental factors, each of which can be subject to Change of Mind.


2017 ◽  
Author(s):  
Ariel Zylberberg ◽  
Daniel M Wolpert ◽  
Michael N Shadlen

SummaryAccurate decisions require knowledge of prior probabilities (e.g., prevalence or base rate) but it is unclear how prior probability is learned in the absence of a teacher. We hypothesized that humans could learn base rates from experience making decisions, even without feedback. Participants made difficult decisions about the direction of dynamic random dot motion. For each block of 15-42 trials, the base rate favored left or right by a different amount. Participants were not informed of the base rate, yet they gradually biased their choices and thereby increased accuracy and confidence in their decisions. They achieved this by updating knowledge of base rate after each decision, using a counterfactual representation of confidence that simulates a neutral prior. The strategy is consistent with Bayesian updating of belief and suggests that humans represent both true confidence, that incorporates the evolving belief of the prior, and counterfactual confidence that discounts the prior.


2021 ◽  
pp. 1-10
Author(s):  
Shou-Han Zhou ◽  
Gerard Loughnane ◽  
Redmond O'Connell ◽  
Mark A. Bellgrove ◽  
Trevor T.-J. Chong

Abstract Current models of perceptual decision-making assume that choices are made after evidence in favor of an alternative accumulates to a given threshold. This process has recently been revealed in human electrophysiological (EEG) recordings, but an unresolved issue is how these neural mechanisms are modulated by competing, yet task-irrelevant, stimuli. In this study, we tested 20 healthy participants on a motion direction discrimination task. Participants monitored two patches of random dot motion simultaneously presented on either side of fixation for periodic changes in an upward or downward motion, which could occur equiprobably in either patch. On a random 50% of trials, these periods of coherent vertical motion were accompanied by simultaneous task-irrelevant, horizontal motion in the contralateral patch. Our data showed that these distractors selectively increased the amplitude of early target selection responses over scalp sites contralateral to the distractor stimulus, without impacting on responses ipsilateral to the distractor. Importantly, this modulation mediated a decrement in the subsequent buildup rate of a neural signature of evidence accumulation and accounted for a slowing of RTs. These data offer new insights into the functional interactions between target selection and evidence accumulation signals, and their susceptibility to task-irrelevant distractors. More broadly, these data neurally inform future models of perceptual decision-making by highlighting the influence of early processing of competing stimuli on the accumulation of perceptual evidence.


2022 ◽  
Vol 3 ◽  
Author(s):  
Catherine Manning ◽  
Kimberly Meier ◽  
Deborah Giaschi

Across two independent developmental labs, we have been puzzled by the observation that a small proportion of our child and adult participants consistently report perceiving motion in the direction opposite to that presented in random dot motion displays, sometimes even when the motion is at 100% coherence. In this review, we first draw together existing reports of misperceptions of motion direction in random dot displays across observers in a small percentage of trials, before reporting evidence of consistent reverse motion perception in a minority of observers, including previously unreported observations from our own studies of visual development. We consider possible explanations for this reverse motion illusion, including motion induction, motion energy, correspondence noise and spatial undersampling. However, more work is required to understand the individual differences relating to this percept. We suggest that errors in perceived motion direction are likely to be more widespread than can be currently gleaned from the literature and explain why systematic study is needed, especially in children. Finally, we list some remaining open questions and call for collaborative efforts to document this phenomenon and stimulate future investigation.


1982 ◽  
Vol 22 (10) ◽  
pp. 1253-1259 ◽  
Author(s):  
Curtis L. Baker ◽  
Oliver J. Braddick

2017 ◽  
Author(s):  
Tristan A. Chaplin ◽  
Benjamin J. Allitt ◽  
Maureen A. Hagan ◽  
Nicholas S. Price ◽  
Ramesh Rajan ◽  
...  

AbstractNeurons in the Middle Temporal area (MT) of the primate cerebral cortex respond to moving visual stimuli. The sensitivity of MT neurons to motion signals can be characterized by using random-dot stimuli, in which the strength of the motion signal is manipulated by adding different levels of noise (elements that move in random directions). In macaques, this has allowed the calculation of “neurometric” thresholds. We characterized the responses of MT neurons in sufentanil/nitrous oxide anesthetized marmoset monkeys, a species which has attracted considerable recent interest as an animal model for vision research. We found that MT neurons show a wide range of neurometric thresholds, and that the responses of the most sensitive neurons could account for the behavioral performance of macaques and humans. We also investigated factors that contributed to the wide range of observed thresholds. The difference in firing rate between responses to motion in the preferred and null directions was the most effective predictor of neurometric threshold, whereas the direction tuning bandwidth had no correlation with the threshold. We also showed that it is possible to obtain reliable estimates of neurometric thresholds using stimuli that were not highly optimized for each neuron, as is often necessary when recording from large populations of neurons with different receptive field concurrently, as was the case in this study. These results demonstrate that marmoset MT shows an essential physiological similarity to macaque MT, and suggest that its neurons are capable of representing motion signals that allow for comparable motion-in-noise judgments.New and NoteworthyWe report the activity of neurons in marmoset MT in response to random-dot motion stimuli of varying coherence. The information carried by individual MT neurons was comparable to that of the macaque, and that the maximum firing rates were a strong predictor of sensitivity. Our study provides key information regarding the neural basis of motion perception in the marmoset, a small primate species that is becoming increasingly popular as an experimental model.


Author(s):  
Tina Comes ◽  
Niek Wijngaards ◽  
Michael Hiete ◽  
Claudine Conrado ◽  
Frank Schultmann

Decision-making in emergency management is a challenging task as the consequences of decisions are considerable, the threatened systems are complex and information is often uncertain. This paper presents a distributed system facilitating better-informed decision-making in strategic emergency management. The construction of scenarios provides a rationale for collecting, organising, and processing information. The set of scenarios captures the uncertainty of the situation and its developments. The relevance of scenarios is ensured by gearing the scenario construction to assessing alternatives, thus avoiding time-consuming processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to both the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios. The theoretical framework is demonstrated in a distributed decision support system by orchestrating experts into workflows tailored to each specific decision.


Sign in / Sign up

Export Citation Format

Share Document