scholarly journals Fragile Memories for Fleeting Percepts

2021 ◽  
Author(s):  
Howard Bowman ◽  
Alberto Avilés

Our perceptual systems are exceptionally good at searching our sensory environments for salient stimuli. A key question is the extent to which this search is performed subliminally. We explore this using Rapid Serial Visual Presentation (RSVP), by comparing detection performance with the memory left for distractors, the stimuli that have to be rejected as non-targets in the process of searching for targets. Our findings are that “immediate” free recall of arbitrary distractors at RSVP rates is very poor, with a severe recency effect. Recognition performance was higher and less subject to recency, but still substantially lower than detection performance. We argue that these findings suggest that the brain subliminally searches for salient stimuli, and are also consistent with a theory we call the tokenized-percept hypothesis, which links conscious perception to the process of episodically marking experiences.

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 6 ◽  
Author(s):  
Ying Zeng ◽  
Qunjian Wu ◽  
Kai Yang ◽  
Li Tong ◽  
Bin Yan ◽  
...  

Electroencephalogram (EEG) signals, which originate from neurons in the brain, have drawn considerable interests in identity authentication. In this paper, a face image-based rapid serial visual presentation (RSVP) paradigm for identity authentication is proposed. This paradigm combines two kinds of biometric trait, face and EEG, together to evoke more specific and stable traits for authentication. The event-related potential (ERP) components induced by self-face and non-self-face (including familiar and not familiar) are investigated, and significant differences are found among different situations. On the basis of this, an authentication method based on Hierarchical Discriminant Component Analysis (HDCA) and Genetic Algorithm (GA) is proposed to build subject-specific model with optimized fewer channels. The accuracy and stability over time are evaluated to demonstrate the effectiveness and robustness of our method. The averaged authentication accuracy of 94.26% within 6 s can be achieved by our proposed method. For a 30-day averaged time interval, our method can still reach the averaged accuracy of 88.88%. Experimental results show that our proposed framework for EEG-based identity authentication is effective, robust, and stable over time.


2018 ◽  
Author(s):  
Yalda Mohsenzadeh ◽  
Caitlin Mullin ◽  
Aude Oliva ◽  
Dimitrios Pantazis

ABSTRACTSome scenes are more memorable than others: they cement in minds with consistencies across observers and time scales. While memory mechanisms are traditionally associated with the end stages of perception, recent behavioral studies suggest that the features driving these memorability effects are extracted early on, and in an automatic fashion. This raises the question: is the neural signal of memorability detectable during early perceptual encoding phases of visual processing? Using the high temporal resolution of magnetoencephalography (MEG), during a rapid serial visual presentation (RSVP) task, we traced the neural temporal signature of memorability across the brain. We found an early and prolonged memorability related signal recruiting a network of regions in both dorsal and ventral streams, detected outside of the constraints of subjective awareness. This enhanced encoding could be the key to successful storage and recognition.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


1996 ◽  
Vol 35 (05) ◽  
pp. 181-185 ◽  
Author(s):  
H. Herzog

SummaryThe measurement of blood flow in various organs and its visual presentation in parametric images is a major application in nuclear medicine. The purpose of this paper is to summarize the most important nuclear medicine procedures used to quantify regional blood flow. Starting with the first concepts introduced by Fick and later by Kety-Schmidt the basic principles of measuring global and regional cerebral blood are discussed and their relationships are explained. Different applications and modifications realized first in PET- and later in SPECT-studies of the brain and other organs are described. The permeability and the extraction of the different radiopharmaceuticals are considered. Finally some important instrumental implications are compared.


Author(s):  
Joel Z. Leibo ◽  
Tomaso Poggio

This chapter provides an overview of biological perceptual systems and their underlying computational principles focusing on the sensory sheets of the retina and cochlea and exploring how complex feature detection emerges by combining simple feature detectors in a hierarchical fashion. We also explore how the microcircuits of the neocortex implement such schemes pointing out similarities to progress in the field of machine vision driven deep learning algorithms. We see signs that engineered systems are catching up with the brain. For example, vision-based pedestrian detection systems are now accurate enough to be installed as safety devices in (for now) human-driven vehicles and the speech recognition systems embedded in smartphones have become increasingly impressive. While not being entirely biologically based, we note that computational neuroscience, as described in this chapter, makes up a considerable portion of such systems’ intellectual pedigree.


Author(s):  
Sascha R. A. Alles ◽  
Anne-Marie Malfait ◽  
Richard J. Miller

Pain is not a simple phenomenon and, beyond its conscious perception, involves circuitry that allows the brain to provide an affective context for nociception, which can influence mood and memory. In the past decade, neurobiological techniques have been developed that allow investigators to elucidate the importance of particular groups of neurons in different aspects of the pain response, something that may have important translational implications for the development of novel therapies. Chemo- and optogenetics represent two of the most important technical advances of recent times for gaining understanding of physiological circuitry underlying complex behaviors. The use of these techniques for teasing out the role of neurons and glia in nociceptive pathways is a rapidly growing area of research. The major findings of studies focused on understanding circuitry involved in different aspects of nociception and pain are highlighted in this article. In addition, attention is drawn to the possibility of modification of chemo- and optogenetic techniques for use as potential therapies for treatment of chronic pain disorders in human patients.


Sign in / Sign up

Export Citation Format

Share Document