scholarly journals Infants in Control: Prospective Motor Control and Executive Functions in Action Development

2018 ◽  
Author(s):  
Janna M. Gottwald

This thesis assesses the link between action and cognition early in development. Thus the notion of an embodied cognition is investigated by tying together two levels of action control in the context of reaching in infancy: prospective motor control and executive functions. The ability to plan our actions is the inevitable foundation of reaching our goals. Thus actions can be stratified on different levels of control. There is the relatively low level of prospective motor control and the comparatively high level of cognitive control. Prospective motor control is concerned with goal-directed actions on the level of single movements and movement combinations of our body and ensures purposeful, coordinated movements, such as reaching for a cup of coffee. Cognitive control, in the context of this thesis more precisely referred to as executive functions, deals with goal-directed actions on the level of whole actions and action combinations and facilitates directedness towards mid- and long-term goals, such as finishing a doctoral thesis. Whereas prospective motor control and executive functions are well studied in adulthood, the early development of both is not sufficiently understood.This thesis comprises three empirical motion-tracking studies that shed light on prospective motor control and executive functions in infancy. Study I investigated the prospective motor control of current actions by having 14-month-olds lift objects of varying weights. In doing so, multi-cue integration was addressed by comparing the use of visual and non-visual information to non-visual information only. Study II examined the prospective motor control of future actions in action sequences by investigating reach-to-place actions in 14-month-olds. Thus the extent to which Fitts’ law can explain movement duration in infancy was addressed. Study III lifted prospective motor control to a higher that is cognitive level, by investigating it relative to executive functions in 18-months-olds.Main results were that 14-month-olds are able to prospectively control their manual actions based on object weight. In this action planning process, infants use different sources of information. Beyond this ability to prospectively control their current action, 14-month-olds also take future actions into account and plan their actions based on the difficulty of the subsequentaction in action sequences. In 18-month-olds, prospective motor control in manual actions, such as reaching, is related to early executive functions, as demonstrated for behavioral prohibition and working memory. These findings are consistent with the idea that executive functions derive from prospective motor control. I suggest that executive functions could be grounded in the development of motor control. In other words, early executive functions should be seen as embodied.

2018 ◽  
Author(s):  
Janna M. Gottwald

This article critically reviews kinematic measures of prospective motor control. Prospective motor control, the ability to anticipatorily adjust movements with respect to task demands and action goals, is an important process involved in action planning. In manual object manipulation tasks, prospective motor control has been studied in various ways, mainly using motion tracking. For this matter, it is crucial to pinpoint the early part of the movement that purely reflects prospective (feed-forward) processes, but not feedback influences from the unfolding movement. One way of defining this period is to rely on a fixed time criterion; another is to base it flexibly on the inherent structure of each movement itself. Velocity—as one key characteristic of human movement—offers such a possibility and describes the structure of movements in a meaningful way. Here, I argue for the latter way of investigating prospective motor control by applying the measure of peak velocity of the first movement unit. I further discuss movement units and their significance in motor development of infants and contrast the introduced measure with other measures related to peak velocity and duration.


2018 ◽  
Author(s):  
Janna M. Gottwald ◽  
Aurora De Bortoli Vizioli ◽  
Marcus Lindskog ◽  
Pär Nyström ◽  
Therese L. Ekberg ◽  
...  

Prospective motor control, a key element of action planning, is the ability to adjust one’s actions with respect to task demands and action goals in an anticipatory manner. The current study investigates whether 14-month-olds are able to prospectively control their reaching actions based on the difficulty of the subsequent action. We used a reach-to-place task, with difficulty of the placing action varied by goal size and goal distance. To target prospective motor control, we determined the kinematics of the prior reaching movements using a motion-tracking system. Peak velocity of the first movement unit of the reach served as indicator for prospective motor control. Both difficulty aspects (goal size and goal distance) affected prior reaching, suggesting that both these aspects of the subsequent action have an impact on the prior action. The smaller the goal size and the longer the distance to the goal, the slower infants were in the beginning of their reach towards the object. Additionally we modeled movement times of both reaching and placing actions using a formulation of Fitts’ law. The model was significant for placement and reaching movement times. These findings suggest that 14-month-olds are able to plan their future actions and prospectively control their related movements with respect to future task difficulties.


2018 ◽  
Vol 6 (s1) ◽  
pp. S126-S137 ◽  
Author(s):  
Janna M. Gottwald

This article critically reviews kinematic measures of prospective motor control. Prospective motor control, the ability to anticipatorily adjust movements with respect to task demands and action goals, is an important process involved in action planning. In manual object manipulation tasks, prospective motor control has been studied in various ways, mainly using motion tracking. For this matter, it is crucial to pinpoint the early part of the movement that purely reflects prospective (feed-forward) processes, but not feedback influences from the unfolding movement. One way of defining this period is to rely on a fixed time criterion; another is to base it flexibly on the inherent structure of each movement itself. Velocity—as one key characteristic of human movement—offers such a possibility and describes the structure of movements in a meaningful way. Here, I argue for the latter way of investigating prospective motor control by applying the measure of peak velocity of the first movement unit. I further discuss movement units and their significance in motor development of infants and contrast the introduced measure with other measures related to peak velocity and duration.


2010 ◽  
Vol 20 (2) ◽  
pp. 29-36
Author(s):  
Erin M. Wilson ◽  
Ignatius S. B. Nip

Abstract Although certain speech development milestones are readily observable, the developmental course of speech motor control is largely unknown. However, recent advances in facial motion tracking systems have been used to investigate articulator movements in children and the findings from these studies are being used to further our understanding of the physiologic basis of typical and disordered speech development. Physiologic work has revealed that the emergence of speech is highly dependent on the lack of flexibility in the early oromotor system. It also has been determined that the progression of speech motor development is non-linear, a finding that has motivated researchers to investigate how variables such as oromotor control, cognition, and linguistic factors affect speech development in the form of catalysts and constraints. Physiologic data are also being used to determine if non-speech oromotor behaviors play a role in the development of speech. This improved understanding of the physiology underlying speech, as well as the factors influencing its progression, helps inform our understanding of speech motor control in children with disordered speech and provide a framework for theory-driven therapeutic approaches to treatment.


2006 ◽  
Author(s):  
Michael Ziessler ◽  
Dieter Nattkemper ◽  
Stefan Vogt ◽  
Samuel Ellsworth ◽  
Jonathan Sayers

Author(s):  
Richard Stone ◽  
Minglu Wang ◽  
Thomas Schnieders ◽  
Esraa Abdelall

Human-robotic interaction system are increasingly becoming integrated into industrial, commercial and emergency service agencies. It is critical that human operators understand and trust automation when these systems support and even make important decisions. The following study focused on human-in-loop telerobotic system performing a reconnaissance operation. Twenty-four subjects were divided into groups based on level of automation (Low-Level Automation (LLA), and High-Level Automation (HLA)). Results indicated a significant difference between low and high word level of control in hit rate when permanent error occurred. In the LLA group, the type of error had a significant effect on the hit rate. In general, the high level of automation was better than the low level of automation, especially if it was more reliable, suggesting that subjects in the HLA group could rely on the automatic implementation to perform the task more effectively and more accurately.


Author(s):  
Rachel M. Brown ◽  
Erik Friedgen ◽  
Iring Koch

AbstractActions we perform every day generate perceivable outcomes with both spatial and temporal features. According to the ideomotor principle, we plan our actions by anticipating the outcomes, but this principle does not directly address how sequential movements are influenced by different outcomes. We examined how sequential action planning is influenced by the anticipation of temporal and spatial features of action outcomes. We further explored the influence of action sequence switching. Participants performed cued sequences of button presses that generated visual effects which were either spatially compatible or incompatible with the sequences, and the spatial effects appeared after a short or long delay. The sequence cues switched or repeated across trials, and the predictability of action sequence switches was varied across groups. The results showed a delay-anticipation effect for sequential action, whereby a shorter anticipated delay between action sequences and their outcomes speeded initiation and execution of the cued action sequences. Delay anticipation was increased by predictable action switching, but it was not strongly modified by the spatial compatibility of the action outcomes. The results extend previous demonstrations of delay anticipation to the context of sequential action. The temporal delay between actions and their outcomes appears to be retrieved for sequential planning and influences both the initiation and the execution of actions.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 152
Author(s):  
Litong Lyu ◽  
Xiao Liang ◽  
Jingbo Guo

Segment assembling is one of the principle processes during tunnel construction using shield tunneling machines. The segment erector is a robotic manipulator powered by a hydraulic system to assemble prefabricated concrete segments onto the excavated tunnel surface. Nowadays, automation of the segment erector has become one of the definite developing trends to further improve the efficiency and safety during construction; thus, closed-loop motion control is an essential technology. Within the segment erector, the lifting gantry is driven by dual cylinders to lift heavy segments in the radial direction. Different from the dual-cylinder mechanism used in other machines such as forklifts, the lifting gantry usually works at an inclined angle, leading to unbalanced loads on the two sides. Although strong guide rails are applied to ensure synchronization, the gantry still occasionally suffers from chattering, “pull-and-drag”, or even being stuck in practice. Therefore, precise motion tracking control as well as high-level synchronization of the dual cylinders have become essential for the lifting gantry. In this study, a complete dynamics model of the dual-cylinder lifting gantry is constructed, considering the linear motion as well as the additional rotational motion of the crossbeam, which reveals the essence of poor synchronization. Then, a two-level synchronization control scheme is synthesized. The thrust allocation is designed to coordinate the dual cylinders and keep the rotational angle of the crossbeam within a small range. The motion tracking controller is designed based on the adaptive robust control theory to guarantee the linear motion tracking precision. The theoretical performance is analyzed with corresponding proof. Finally, comparative simulations are conducted and the results show that the proposed scheme achieves high-precision motion tracking performance and simultaneous high-level synchronization of dual cylinders under unbalanced loads.


2021 ◽  
Vol 12 ◽  
pp. 204062232110012
Author(s):  
Rocío Palomo-Carrión ◽  
Elisabeth Bravo-Esteban ◽  
Sara Ando-La Fuente ◽  
Purificación López-Muñoz ◽  
Inés Martínez-Galán ◽  
...  

Background: The capacity of children with hemiplegia to be engaged in anticipatory action planning is affected. There is no balance among spatial, proprioceptive and visual information, thus altering the affected upper limb visuomotor coordination. The objective of the present study was to assess the improvement in visuomotor coordination after the application of a unimanual intensive therapy program, with the use of unaffected hand containment compared with not using unaffected hand containment. Methods: A simple blind randomized clinical trial was realized. A total of 16 subjects with congenital infantile hemiplegia participated in the study with an age mean of 5.54 years old (SD:1.55). Two intensive protocols for 5 weeks of modified constraint-induced movement therapy (mCIMT) or unimanual therapy without containment (UTWC) were executed 5 days per week (2 h/day). Affected upper limb visuomotor coordination (reaction time, task total time, active range, dynamic grasp) was measured before–after intensive therapy using a specific circuit with different slopes (10°/15°). Results: Statistically significant inter-group differences were found after the intervention, with clinically relevant results for the mCIMT group not seen in UTWC, in the following variables: reaction time 10°slope ( p = 0.003, d = 2.44), reaction time 15°slope ( p = 0.002, d = 2.15) as well as for the task total time 10°slope ( p = 0.002, d = 2.25), active reach 10°slope ( p = 0.002, d = 2.7), active reach 15°slope ( p = 0.003, d = 2.29) and dynamic grasp 10°/15°slopes ( p = <0.001, d = 2.69). There were not statistically significant inter-group differences in the total task time with 15°slope ( p = 0.074, d = 1.27). Conclusions: The use of unaffected hand containment in mCIMT would allow improvements in the affected upper limb’s visuomotor coordination. Thus, it would favor clinical practice to make decisions on therapeutic approaches to increase the affected upper limb functionality and action planning in children diagnosed with infantile hemiplegia (4–8 years old).


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199858
Author(s):  
Gianpaolo Gulletta ◽  
Eliana Costa e Silva ◽  
Wolfram Erlhagen ◽  
Ruud Meulenbroek ◽  
Maria Fernanda Pires Costa ◽  
...  

As robots are starting to become part of our daily lives, they must be able to cooperate in a natural and efficient manner with humans to be socially accepted. Human-like morphology and motion are often considered key features for intuitive human–robot interactions because they allow human peers to easily predict the final intention of a robotic movement. Here, we present a novel motion planning algorithm, the Human-like Upper-limb Motion Planner, for the upper limb of anthropomorphic robots, that generates collision-free trajectories with human-like characteristics. Mainly inspired from established theories of human motor control, the planning process takes into account a task-dependent hierarchy of spatial and postural constraints modelled as cost functions. For experimental validation, we generate arm-hand trajectories in a series of tasks including simple point-to-point reaching movements and sequential object-manipulation paradigms. Being a major contribution to the current literature, specific focus is on the kinematics of naturalistic arm movements during the avoidance of obstacles. To evaluate human-likeness, we observe kinematic regularities and adopt smoothness measures that are applied in human motor control studies to distinguish between well-coordinated and impaired movements. The results of this study show that the proposed algorithm is capable of planning arm-hand movements with human-like kinematic features at a computational cost that allows fluent and efficient human–robot interactions.


Sign in / Sign up

Export Citation Format

Share Document