scholarly journals The place of the Zheltozem-Gley Soils of Azerbaijan in the International System WRB

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maharram P. Babayev ◽  
Amin I. Ismayilov ◽  
Sultan M. Huseynova

The aim of the study. The aim of the research was obtaining new information about the genesis, current status, diagnostic features and properties of the Zheltozem-Gley Soils of the Lankaran region of Azerbaijan and to perform the taxonomic attribution of those soils in accordance with the International Classification of Soils in compliance with the Reference Base for soil resources (IUSS Working Group WRB, 2014). Location and time of the study. Zheltozem-Gley Soils of the Lankaran region of Azerbaijan were the objects of the study. Methodology. Field experiments (relief, vegetation, laying of soil profiles, their description, selection of soil samples and establishment of a preliminary classification name of the soils) and physico-chemical analyzes of soil samples (humus and total nitrogen content, ratio of C:N in soil organic matter, soil pH, cation exchange capacity, grain-size analysis, water extract composition) were carried out by standard methods. Results. It was established that the most characteristic features of the irrigated zheltozem-gley soils were as following: blocky angular-subangular structure of the upper horizon, clayiness of the entire soil profile, the presence of iron-manganese concretions and ferruginous mottles. A gradual decrease in the content of humus (from 2.15-3.28 to 0.18-1.24%), nitrogen (from 0.17-0.24 to 0.05-0.24%), the ratio of C:N (from 6.64-7.18 to 1.89-5.91) was found. The cation exchange capacity increased down the profile (from 33.37-37.13 to 34.31-40.89 cmol (eq)/kg). The reaction of the soil environment was weakly acidic, and varied within 5.8-6.0. Under the influence of irrigation, the removal of the silt fraction from the upper horizons and its accumulation in the middle horizons of the soil were observed (42-96 cm – 42.4%, 48-87 cm – 28.8%). According to the granulometric composition, these soils were medium-light-heavy loamy. The soils were not saline. Conclusion. For the first time, an attempt was made to carry out the taxonomic attribution of Zheltozem-Gley soils (irrigated Zheltozem-Gley merged, ordinary Zheltozem-Gleyic, irrigated Zheltozem-Gley, irrigated residual calcareous Zheltozem-Gley) according to the international classification of soils based on the Reference Base for soil resources (WRB). With the different principal and supplementary qualifiers, all soils were classified as Lixisols.

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S. Czarnecki ◽  
R.-A. Düring

Abstract. Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization, and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH value, application of unsuitable fertilizers) can enhance the mobility of metals and thereby increase their concentrations in agricultural products. As the enrichment of metals in soils occurs over long time periods, monitoring of the long-term impact of fertilization is necessary to assess metal accumulation in agricultural soils. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg, and cation exchange capacity (CEC)) and pseudo-total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations (210, 260, 360, and 620 m above sea level) in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo- and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years of mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Eight years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6, 54.2, 48.5, 74.4, and 56.9% in pseudo-total Cd, Cu, Mn, Pb, and Zn contents, respectively, was determined.


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


1994 ◽  
Vol 74 (4) ◽  
pp. 421-429 ◽  
Author(s):  
Wietse L. Meyer ◽  
Paul A. Arp

Concentrations of Ca, Mg, K, Na, Al, Fe, Mn, and Si extractable with 1 N ammonium chloride (NH4Cl, pH 4.5) and 1 N ammonium acetate (NH4OAc, pH 4.5) were determined for forest soil samples as follows: (1) before drying, and (2) at several time intervals after air-drying (1, 5, 11 and 14 wk). Values for CEC were obtained for the same samples by determining (1) the sum of cations (Al3+, Ca2+, Mg2+, K+, Na+, Fe3+, and Mn2+) in the extracts [denoted [Formula: see text] and [Formula: see text]], and (2) the amount of ammonium retained by the soil samples against water washing [denoted CEC(NH4OAc) and CEC (NH4Cl)]. The soils used in this investigation were taken from four New Brunswick upland forest sites (two sugar maple sites, one mixed wood site, and one spruce site). It was round that (1) extractable Mg, K, Na, and Mn levels were generally not affected by drying, storing, and type of extradant; (2) extractable Al and Fe levels increased immediately after drying; (3) NH4OAc-extracted Al, Fe, and Si exceeded NH4Cl-extracted Al, Fe, and Si; (4) extracted Al and Fe levels tended to drop after 11 wk of storage; (5) small drying effects were also noticed for NH4Cl-extracted Ca; (6) CEC(NH4OAc) and CEC(NH4Cl) values decreased with increasing time of storage; this effect was noticed most for soil samples with high levels of organic matter (Ah, Ahe, Bm, Bf, and Bfh), and was noticed least for sod samples taken from leached horizons (Ae) and subsoil horizons (BC and C); (7) in some cases, storage time increased CEC(NH4OAc) in subsoils; (8) values for [Formula: see text] remained fairly independent or increased slightly with storage time and were closely related with CEC(NH4Cl) values obtained with non-dried samples; (9) values for [Formula: see text] did not relate well with CEC(NH4OAc) and CEC(NH4Cl). Differences for extractable Al were likely due to Al complexation by acetate ions. Drying effects on extractable Al and Fe (and possibly Ca) were likely due to drying-induced fragmentation of soil organic matter. Drying and storage effects on CEC(NH4OAc) and CEC(NH4Cl) were likely due to (1) water-washing and related loss of organic matter, and (2) sensitivity of subsoil minerals to air exposure. Apparent drying and storage effects on CEC were most noted with [Formula: see text] and were least noted with [Formula: see text]. Key words: Cation exchange capacity, ion exchange, drying, storage, ammonium acetate, ammonium chloride extractions


2006 ◽  
Vol 63 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Zigomar Menezes de Souza ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Diogo Mazza Barbieri

Soils with small variations in relief and under the same management system present differentiated spatial variabilities of their attributes. This variability is a function of soil position in the landscape, even if the relief has little expression. The aim of this work was to investigate the effects of relief shape and depth on spatial variability of soil chemical attributes in a Typic Hapludox cultivated with sugar cane at two landscape compartments. Soil samples were collected in the intercrossing points of a grid, in the traffic line, at 0-0.2 m and 0.6-0.8 m depths, comprising a set of 100 georeferenced points. The spatial variabilities of pH, P, K, Ca, Mg, cation exchange capacity and base saturation were quantified. Small relief shape variations lead to differentiated variability in soil chemical attributes as indicated by the dependence on pedoform found for chemical attributes at both 0-0.2 m and 0.6-0.8 m depths. Because of the higher variability, it is advisable to collect large number of samples in areas with concave and convex shapes. Combining relief shapes and geostatistics allows the determination of areas with different spatial variability for soil chemical attributes.


1970 ◽  
Vol 74 (1) ◽  
pp. 131-137 ◽  
Author(s):  
T. M. Addiscott

SUMMARYThe potassium quantity/intensity (Q/I) relationships, which relate change in exchangeable K content (Q) to change in activity ratio were measured in soil samples from manuring experiments at Rothamsted and Woburn. Within each experiment, Q/I curves for different K-manuring treatments were super-imposable on each other and on the curve relating exchangeable K to Io, the activity ratio at which the soil neither gains nor loses K. The distances on the Q axis between the curves were equal to the differences in exchangeable K.The buffer capacity, dQ/dI, was related to the K saturation of the cation exchange capacity (CEC) by the equations(Q and CEC in m-equiv/100 g)Broadbalk and Hoosfield soil, andfor Barnfield soils (b= 3·08; m= 1·0) and for Woburn market garden soils (b =2·41; m= 0·6) but for soils from other Woburn experiments, dQ/dl did not vary significantly with Q/CEC.


1987 ◽  
Vol 67 (1) ◽  
pp. 175-185 ◽  
Author(s):  
MARTIN DUQUETTE ◽  
WILLIAM H. HENDERSHOT

The cation and anion exchange capacities (CEC and AEC) as functions of pH were measured for 12 soil samples from various parts of Quebec. In addition to the index cation Ca, Al was measured in the replacing solutions in order to evaluate the contribution of Al to pH-dependent CEC at low pH. Although all of the soils possessed some pH-dependent CEC, the soils with the steepest rise in CEC with pH were those with the largest accumulation of sesquioxides. The effective CEC, measured at the soil pH, ranged from 2.4 to 37.2 cmol(+) kg−1 while the CEC at pH 7 minus the CEC at pH3 varied from 4.4 to 39.9 cmol(+) kg−1. The maximum amount of exchangeable Al was found to correlate very highly with the amount of amorphous inorganic Al in the samples. The inclusion of exchangeable Al in the calculation did not significantly reduce the amount of pH-dependent CEC measured for the soils. Key words: Effective CEC, permanent charge, pH-dependent CEC


2011 ◽  
Vol 3 (3) ◽  
pp. 683-688
Author(s):  
M. N. Islam ◽  
A. F. M. Sanaullah

Bangladesh is one of the tea producing countries of the world. It has 163 tea estates. Rangapani is a low yielding tea estate relative to other neighboring tea estates of Chittagong district in Bangladesh. A total 54 soil samples were collected from six different hills and three topographic positions having different depths of Rnagapanni Tea-Estate. Physico-Chemical properties of soils such as active acidity, reserve acidity, cation exchange capacity and clay content of the collected soil samples were determined. The measured parameters of the soil samples were plotted and analyzed with reference to site and topography. The parameters have been found to vary with sampling sites, depths and topography. Active acidity and reserve acidity were very low, with some exceptions compared to the optimum range for tea cultivation. Sand, silt, clay and cation exchange capacity (CEC) were found in reasonable range Keywords:  Soil; Active acidity; Reserve acidity; Cation exchange capacity; Clay content. © 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: 10.3329/jsr.v3i3.7503               J. Sci. Res. 3 (3), 683-688 (2011)


Sign in / Sign up

Export Citation Format

Share Document