Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity

2006 ◽  
Vol 85 (3-4) ◽  
pp. 295-301 ◽  
Author(s):  
Işık Yilmaz
1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


Author(s):  
Atma Sharma ◽  
Budhaditya Hazra ◽  
Giovanni Spagnoli ◽  
Sreedeep Sekharan

Specific surface area (SSA) and cation exchange capacity (CEC) are two fundamental clay properties. However, the determination of CEC and SSA is challenging due to inherent uncertainties and difficulty in experimental measurement. Popular approach is to employ transformation models for its estimation. However, most of the existing models were developed on limited sample sizes, and quantification of uncertainty associated with the estimate is not possible. Therefore this study proposes a multivariate probabilistic approach for estimation of CEC and SSA. First, a five-dimensional database (278×5) for parameters liquid limit (LL), plasticity index (PI), clay fraction (CF), CEC and SSA (labelled as CLAY/C-S/5/278) is developed. Thereafter, multivariate distribution for the five parameters in the database is constructed using vine copula approach. Implementation of the proposed approach is demonstrated by updating prior/unconditional probability density function (PDFs) of CEC and SSA given single/ multiple clay parameters using Bayes’ rule. The posterior/conditional PDFs of CEC and SSA are also summarized as practitioner friendly analytical expressions. Two geotechnical application examples are also shown. In the proposed approach, CEC and SSA are characterized by their complete joint distribution, and is, therefore, superior to the popular deterministic transformation approach in literature.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maharram P. Babayev ◽  
Amin I. Ismayilov ◽  
Sultan M. Huseynova

The aim of the study. The aim of the research was obtaining new information about the genesis, current status, diagnostic features and properties of the Zheltozem-Gley Soils of the Lankaran region of Azerbaijan and to perform the taxonomic attribution of those soils in accordance with the International Classification of Soils in compliance with the Reference Base for soil resources (IUSS Working Group WRB, 2014). Location and time of the study. Zheltozem-Gley Soils of the Lankaran region of Azerbaijan were the objects of the study. Methodology. Field experiments (relief, vegetation, laying of soil profiles, their description, selection of soil samples and establishment of a preliminary classification name of the soils) and physico-chemical analyzes of soil samples (humus and total nitrogen content, ratio of C:N in soil organic matter, soil pH, cation exchange capacity, grain-size analysis, water extract composition) were carried out by standard methods. Results. It was established that the most characteristic features of the irrigated zheltozem-gley soils were as following: blocky angular-subangular structure of the upper horizon, clayiness of the entire soil profile, the presence of iron-manganese concretions and ferruginous mottles. A gradual decrease in the content of humus (from 2.15-3.28 to 0.18-1.24%), nitrogen (from 0.17-0.24 to 0.05-0.24%), the ratio of C:N (from 6.64-7.18 to 1.89-5.91) was found. The cation exchange capacity increased down the profile (from 33.37-37.13 to 34.31-40.89 cmol (eq)/kg). The reaction of the soil environment was weakly acidic, and varied within 5.8-6.0. Under the influence of irrigation, the removal of the silt fraction from the upper horizons and its accumulation in the middle horizons of the soil were observed (42-96 cm – 42.4%, 48-87 cm – 28.8%). According to the granulometric composition, these soils were medium-light-heavy loamy. The soils were not saline. Conclusion. For the first time, an attempt was made to carry out the taxonomic attribution of Zheltozem-Gley soils (irrigated Zheltozem-Gley merged, ordinary Zheltozem-Gleyic, irrigated Zheltozem-Gley, irrigated residual calcareous Zheltozem-Gley) according to the international classification of soils based on the Reference Base for soil resources (WRB). With the different principal and supplementary qualifiers, all soils were classified as Lixisols.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


Sign in / Sign up

Export Citation Format

Share Document