scholarly journals Major histocompatibility complex and its importance towards controlling infection

2017 ◽  
Vol 8 (2) ◽  
pp. 1-13
Author(s):  
Langamba Angom Longjam ◽  
Dipmala Das

It is well documented that infectious pathogen burden and infected cell mass determine the clinical severity of infectious diseases, however, the ability of the host to recognize and process antigens to produce antibodies or the cellular immune response during infection could be under genetic control. The Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) system is the most intensively studied of all genetic systems because of its influence to many important traits, including resistance to infectious diseases, autoimmunity and immunological self or nonself compatibility. This is understandable in the light of the evolutionary pressure so that we are equipped to face the multitude of infectious challenges. Infectious diseases are a major selective pressure;and genes involved in the immune response are the most numerous and diverse in the human genome; reflecting the evolutionary advantages of a diverse immunological response to a wide range of infectious pathogens.Asian Journal of Medical Sciences Vol.8(2) 2017 1-13

2019 ◽  
Vol 20 (18) ◽  
pp. 4544 ◽  
Author(s):  
Tsukasa Nakamura ◽  
Takayuki Shirouzu ◽  
Katsuya Nakata ◽  
Norio Yoshimura ◽  
Hidetaka Ushigome

Organ transplantation has progressed with the comprehension of the major histocompatibility complex (MHC). It is true that the outcome of organ transplantation largely relies on how well rejection is managed. It is no exaggeration to say that to be well acquainted with MHC is a shortcut to control rejection. In human beings, MHC is generally recognized as human leukocyte antigens (HLA). Under the current circumstances, the number of alleles is still increasing, but the function is not completely understood. Their roles in organ transplantation are of vital importance, because mismatches of HLA alleles possibly evoke both cellular and antibody-mediated rejection. Even though the control of cellular rejection has improved by recent advances of immunosuppressants, there is no doubt that antibody-mediated rejection (AMR), which is strongly correlated with donor-specific anti-HLA antibodies (DSA), brings a poor outcome. Thus, to diagnose and treat AMR correctly is a clear proposition. In this review, we would like to focus on the detection of intra-graft DSA as a recent trend. Overall, here we will review the current knowledge regarding MHC, especially with intra-graft DSA, and future perspectives: HLA epitope matching; eplet risk stratification; predicted indirectly recognizable HLA epitopes etc. in the context of organ transplantation.


1977 ◽  
Vol 5 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Michael A. Palladino ◽  
Douglas G. Gilmour ◽  
Albert R. Scafuri ◽  
Howard A. Stone ◽  
G. Jeanette Thorbecke

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Satish Galla ◽  
Michael Didie ◽  
Vijayakumar Muppala ◽  
Ralf Dressel ◽  
Wolfram Hubertus Zimmermann

Background: Pluripotent parthenogenetic stem cells (PSCs) can be directed towards a cardiac fate and utilized in tissue engineered heart repair. In vivo applications of tissue engineered allografts are compromised by expression of mismatching major histocompatibility complex proteins (MHC; encoded in the murine H2 locus). Here we investigated whether PSC-derived cardiomyocytes (CM) express MHC-I. Methods: Mouse PSCs (A3-line from B6D2F1 strain with haploidentical H2K d -locus) expressing a CM-specific neomycin-resistance and GFP were differentiated and purified for CM by addition of G418 (85% purity by FACS for actinin). To simulate heart muscle biology in vitro, we made use of engineered heart muscle (EHM) constructed from PSC-derived CM (75%), growth-inhibited murine embryonic fibroblasts (MEF (25%); NMRI mice), and collagen type I. MHC class-I H2K d (MHC-I) expression was assessed on CM and Non myocytes before EHM assembly and from enzymatically digested EHMs (cultured for 10 days) by FACS. Interferon gamma (IFNγ) was added for 48 h to stimulate MHC-I expression. As a reference, we investigated MHC-I expression in CM from neonatal mice and adult mouse hearts by FACS and by immunofluorescence staining. Results: EHM showed a positive ionotropic response to beta-adrenergic stimulation which could be reduced by muscarinergic stimulation. A3-CM, in contrast to Non myocytes, showed negligible expression of MHC-I (1±0.5% vs. 60±10% positive cells; n=3). EHM culture did not change MHC-I expression in CM. IFNγ treatment resulted in a marked increase of MHC-I-expression in CM monolayer culture (40±6%; n=3) and in EHM (30±8%; n=3). For comparison, 30% (n=2) neonatal CM expressed MHC-I while MHC-I was not detectable in adult CM. Conclusion: PSC-derived CM show a similarly low expression of MHC-I as adult CM and respond with MHC-I upregulation to IFNγ stimulation. This suggests a mature immunological response in PSC-CM with important implications for in vivo applications, i.e., MHC-I matching will likely be a prerequisite for successful allografting of PSC-EHM.


Author(s):  
T. Jardetzky

The initiation and maintenance of an immune response to pathogens requires the interactions of cells and proteins that together are able to distinguish appropriate non-self targets from the myriadof self-proteins (Janeway and Bottomly, 1994). This discrimination between self and non-self is in part accomplished by three groups of proteins of the immune system that have direct and specific interactions with antigens: antibodies, T cell receptors (TcR) and major histocompatibility complex (MHC) proteins. Antibodies and TcR molecules are clonally expressed by the B and T cells of the immune system, respectively, defining each progenitor cell with a unique specificity for antigen. In these cell types both antibodies and TcR proteins undergo similar recombination events to generate a variable antigen combining site and thus produce a nearly unlimited number of proteins of different specificities. TcR molecules are further selected to recognize antigenic peptides bound to MHC proteins, during a process known as thymic selection, restricting the repertoire of T cells to the recognition of antigens presented by cells that express MHC proteins at their surface. Thymic selection of TcR and the subsequent restricted recognition of peptide-MHC complexes by peripheral T cells provides a fundamental molecular basis for the discrimination of self from non-sell and the regulation of the immune response (Allen, 1994; Nossal, 1994; von Boehmer, 1994). For example, different classes of T cells are used to recognize and kill infected cells (cytotoxic T cells) arid to provide lymphokiries that induce the niajority of soluble antibody responses of B cells (helper T cells). In contrast to the vast combinatorial and clonal diversity of antibodies and TcRs, a small set of MHC molecules is used to recognize a potentially unlimited universe of foreign peptide antigens for antigen presentation to T cells (Germain, 1994). This poses the problem of how each MHC molecule is capable of recognizing enough peptides to insure an immune response to pathogens. In addition, the specificity of the TcR interaction with MHC-peptide complexes is clearly crucial to the problem of self :non-self discrimination, with implications for both protective immunity and auto-immune disease.


Sign in / Sign up

Export Citation Format

Share Document